Committee login






Small thumbnail

Reliability Investigation of LED Devices for Public Light Applications

Durability, Robustness and Reliability of Photonic Devices Set

Small thumbnail

Aerospace Actuators 2

Signal-by-Wire and Power-by-Wire

Small thumbnail

Flash Memory Integration

Performance and Energy Considerations

Small thumbnail

Mechanics of Aeronautical Solids, Materials and Structures

Small thumbnail

Engineering Investment Process

Making Value Creation Repeatable

Small thumbnail

Space Strategy

Small thumbnail

Distributed Systems

Concurrency and Consistency

Small thumbnail

Fatigue of Textile and Short Fiber Reinforced Composites

Durability and Ageing of Organic Composite Materials Set Volume 1

Small thumbnail

Management of the Effects of Coastal Storms

Policy, Scientific and Historical Perspectives

Small thumbnail

Computational Color Science

Variational Retinex-like Methods

Small thumbnail

Electrostatic Kinetic Energy Harvesting

Nanotechnologies for Energy Recovery Set Volume 3

Philippe Basset, University Paris-Est, France Elena Blokhina, University College Dublin, Ireland Dimitri Galayko, UPMC-Sorbonne Universities in Paris, France

ISBN: 9781848217164

Publication Date: March 2016   Hardback   244 pp.

115.00 USD

Add to cart




As we enter the age of the Internet of Things (IoT), miniaturization and efficiency are going to be predominant trends in microelectronics. Since the technologies of the future inevitably need energy sources, energy harvesting will continue to develop into an extremely active, versatile and growing area that attracts engineers and scientists from the field of electronics, microsystems and materials science. This book discusses electrostatic kinetic energy harvesting, which, in the opinion of the authors, is under-represented in the literature despite its particular compatibility to microtechnological applications.
While the primary focus of this book is energy harvesting employing the electrostatic transduction, it does cover all aspects necessary to understand and design an efficient harvester, including linear and nonlinear resonators, electrostatic transaction principles, microfabrication processes and the design of conditioning electronics.
Chapters 1, 2 and 7 discuss a capacitive energy harvester as a system, with additional chapters devoted to the operation in both the electrical and the mechanical domains. Chapters 3 through 6 discuss mechanical aspects of harvesters, and Chapters 8 through 11 are devoted to electronic conditioning circuitry. The authors have made a choice to present the material at a relatively high level of abstraction, limiting the discussion to the aspects that have most impact on the global operation of the harvester, while still providing the reader with a thorough understanding of the role and function of each component in an energy harvester.


1. Introduction to Electrostatic Kinetic Energy Harvesting.
2. Capacitive Transducers.
3. Mechanical Aspects of Kinetic Energy Harvesters: Linear Resonators.
4. Mechanical Aspects of Kinetic Energy Harvesters: Nonlinear Resonators.
5. Fundamental Effects of Nonlinearity.
6. Nonlinear Resonance and its Application to Electrostatic Kinetic Energy Harvesters.
7. MEMS Device Engineering for e-KEH.
8. Basic Conditioning Circuits for Capacitive Kinetic Energy Harvesters.
9. Circuits Implementing Triangular QV Cycles.
10. Circuits Implementing Rectangular QV Cycles, Part I.
11. Circuits Implementing Rectangular QV Cycles, Part II.

About the Authors

Philippe Basset is Associate Professor at University Paris-Est, France. He is an expert in the fields of microelectromechanical systems (MEMS), electrical engineering, electronic engineering and engineering physics.
Elena Blokhina is a lecturer at University College Dublin, Ireland. Her expertise lies in the area of nonlinear circuits and systems, oscillation theory and mathematical modeling.
Dimitri Galayko is Associate Professor at the UPMC-Sorbonne Universities in Paris, France. He is an expert in the field of microelectronics and in the field of integrated system design and modeling


DownloadTable of Contents - PDF File - 35 Kb

Related Titles

0.01914 s.