General

Authors

Search


Committee login



 
 

 


 

 

Forthcoming

Small thumbnail

Dynamics of Large Structures and Inverse Problems

Mathematical and Mechanical Engineering Set Volume 5

Small thumbnail

Civil Engineering Structures According to the Eurocodes

Small thumbnail

Swelling Concrete in Dams and Hydraulic Structures

DSC 2017

Small thumbnail

Earthquake Occurrence

Short- and Long-term Models and their Validation

Small thumbnail

The Chemostat

Mathematical Theory of Microorganims Cultures

Small thumbnail

From Prognostics and Health Systems Management to Predictive Maintenance 2

Knowledge, Traceability and Decision

Small thumbnail

First Hitting Time Regression Models

Lifetime Data Analysis Based on Underlying Stochastic Processes

Small thumbnail

The Innovative Company

An Ill-defined Object

Small thumbnail

Reading and Writing Knowledge in Scientific Communities

Digital Humanities and Knowledge Construction

Small thumbnail

Going Past Limits To Growth

A Report to the Club of Rome EU-Chapter

Small thumbnail

Command-control for Real-time Systems

Mohammed Chadli, University of Picardy Jules Verne, Amiens, France Hervé Coppier, ESIEE Amiens, France

ISBN: 9781848213654

Publication Date: April 2013   Hardback   384 pp.

145.00 USD


Add to cart

eBooks


Ebook Ebook

Description

A real-time system is a complex system which is an integral part of an industrial or experimental system, a vehicle or a construction machine. The peculiarity of these systems is that they are driven by real-time targets in distributed environments.
Command-control for Real-time Systems presents the calculation of correction for industrial systems of different physical natures, their implementation on real-time target industrial systems (PLC-SCADA, embedded systems with distributed networks, Networked Control Systems) and their validation by simulation. It optimizes industrial processes by the use of automatic tools, industrial computing and communications networks and aims to successively integrate new control laws (linear, nonlinear and fuzzy controllers) so that users can leverage the power of engineering science as an automatic service process optimization while maintaining their high maintainability facilities.

Contents

1. Introduction.
2. Modeling Tools, Sébastien Cabaret and Mohammed Chadli.
3. Control Tools, Mohammed Chadli and Hervé Coppier.
4. Application to Cryogenic Systems, Marco Pezzetti, Hervé Coppier and Mohammed Chadli.
5. Applications to a Thermal System and to Gas Systems, Sébastien Cabaret and Hervé Coppier.
6. Application to Vehicles, Elie Kafrouni and Mohammed Chadli.
7. Real-time Implementation, Marco Pezzetti and Hervé Coppier.

About the Authors

Mohamed Chadli is a senior lecturer and research supervisor at the University of Picardie Jules Verne (UPJV) in France. His main research interests lie in robust control, the diagnosis and fault tolerant control of polytopic systems and applications for automobiles. He is a senior member of the IEEE, and Vice President of the AAI Club as part of SEE-France. He is the author/co-author of 3 books, book chapters and more than 100 articles published in international journals and conferences.
Hervé Coppier is a lecturing researcher at ESIEE-Amiens in France. He has collaborated with industrialists in the field of automation and industrial computing, particularly with CERN, and has spearheaded various international European projects.

Downloads

DownloadTables of Contents - PDF File - 178 Kb

Related Titles



































0.02897 s.