General

Authors

Search


Committee login



 
 

 


 

 

Forthcoming

Small thumbnail

Dynamics of Large Structures and Inverse Problems

Mathematical and Mechanical Engineering Set Volume 5

Small thumbnail

Civil Engineering Structures According to the Eurocodes

Small thumbnail

Swelling Concrete in Dams and Hydraulic Structures

DSC 2017

Small thumbnail

Earthquake Occurrence

Short- and Long-term Models and their Validation

Small thumbnail

The Chemostat

Mathematical Theory of Microorganims Cultures

Small thumbnail

From Prognostics and Health Systems Management to Predictive Maintenance 2

Knowledge, Traceability and Decision

Small thumbnail

First Hitting Time Regression Models

Lifetime Data Analysis Based on Underlying Stochastic Processes

Small thumbnail

The Innovative Company

An Ill-defined Object

Small thumbnail

Reading and Writing Knowledge in Scientific Communities

Digital Humanities and Knowledge Construction

Small thumbnail

Going Past Limits To Growth

A Report to the Club of Rome EU-Chapter

Small thumbnail

Data Mining and Machine Learning in Building Energy Analysis

Frédéric Magoulès, Ecole Centrale Paris, France Hai-Xiang Zhao, Amadeus, France

ISBN: 9781848214224

Publication Date: January 2016   Hardback   186 pp.

110.00 USD


Add to cart

eBooks


Ebook

Description

The energy consumption of a building has, in recent years, become a determining factor during its design and construction. With carbon footprints being a growing issue, it is important that buildings be optimized for energy conservation and CO2 reduction. This book therefore presents AI models and optimization techniques related to this application.
The authors start with a review of recent models for the prediction of building energy consumption: engineering methods, statistical methods, artificial intelligence methods, ANNs and SVMs in particular. The book then focuses on SVMs, by first applying them to building energy consumption, then presenting the principles and various extensions, and SVR. The authors then move on to RDP, which they use to determine building energy faults through simulation experiments before presenting SVR model reduction methods and the benefits of parallel computing. The book then closes by presenting some of the current research and advancements in the field.

Contents

1. Overview of Building Energy Analysis.
2. Data Acquisition for Building Energy Analysis.
3. Artificial Intelligence Models.
4. Artificial Intelligence for Building Energy Analysis.
5. Model Reduction for Support Vector Machines.
6. Parallel Computing for Support Vector Machines.

About the Authors

Frédéric Magoulès is Professor at the Ecole Centrale Paris in France and Honorary Professor at the University of Pècs in Hungary. His research focuses on parallel computing, numerical linear algebra and machine learning.
Hai-Xiang Zhao is Senior Researcher at Amadeus in France. His research focuses on parallel computing, data mining and machine learning.

Downloads

DownloadTable of Contents - PDF File - 43 Kb

Related Titles



































0.05633 s.