Committee login






Small thumbnail

Reliability Investigation of LED Devices for Public Light Applications

Durability, Robustness and Reliability of Photonic Devices Set

Small thumbnail

Aerospace Actuators 2

Signal-by-Wire and Power-by-Wire

Small thumbnail

Flash Memory Integration

Performance and Energy Considerations

Small thumbnail

Mechanics of Aeronautical Solids, Materials and Structures

Small thumbnail

Engineering Investment Process

Making Value Creation Repeatable

Small thumbnail

Space Strategy

Small thumbnail

Distributed Systems

Concurrency and Consistency

Small thumbnail

Fatigue of Textile and Short Fiber Reinforced Composites

Durability and Ageing of Organic Composite Materials Set Volume 1

Small thumbnail

Management of the Effects of Coastal Storms

Policy, Scientific and Historical Perspectives

Small thumbnail

Computational Color Science

Variational Retinex-like Methods

Small thumbnail

Data Mining and Machine Learning in Building Energy Analysis

Frédéric Magoulès, Ecole Centrale Paris, France Hai-Xiang Zhao, Amadeus, France

ISBN: 9781848214224

Publication Date: January 2016   Hardback   186 pp.

110.00 USD

Add to cart




The energy consumption of a building has, in recent years, become a determining factor during its design and construction. With carbon footprints being a growing issue, it is important that buildings be optimized for energy conservation and CO2 reduction. This book therefore presents AI models and optimization techniques related to this application.
The authors start with a review of recent models for the prediction of building energy consumption: engineering methods, statistical methods, artificial intelligence methods, ANNs and SVMs in particular. The book then focuses on SVMs, by first applying them to building energy consumption, then presenting the principles and various extensions, and SVR. The authors then move on to RDP, which they use to determine building energy faults through simulation experiments before presenting SVR model reduction methods and the benefits of parallel computing. The book then closes by presenting some of the current research and advancements in the field.


1. Overview of Building Energy Analysis.
2. Data Acquisition for Building Energy Analysis.
3. Artificial Intelligence Models.
4. Artificial Intelligence for Building Energy Analysis.
5. Model Reduction for Support Vector Machines.
6. Parallel Computing for Support Vector Machines.

About the Authors

Frédéric Magoulès is Professor at the Ecole Centrale Paris in France and Honorary Professor at the University of Pècs in Hungary. His research focuses on parallel computing, numerical linear algebra and machine learning.
Hai-Xiang Zhao is Senior Researcher at Amadeus in France. His research focuses on parallel computing, data mining and machine learning.


DownloadTable of Contents - PDF File - 43 Kb

Related Titles

0.02529 s.