General

Authors

Search


Committee login



 
 

 


 

 

Forthcoming

Small thumbnail

Reliability Investigation of LED Devices for Public Light Applications

Durability, Robustness and Reliability of Photonic Devices Set

Small thumbnail

Aerospace Actuators 2

Signal-by-Wire and Power-by-Wire

Small thumbnail

Flash Memory Integration

Performance and Energy Considerations

Small thumbnail

Mechanics of Aeronautical Solids, Materials and Structures

Small thumbnail

Engineering Investment Process

Making Value Creation Repeatable

Small thumbnail

Space Strategy

Small thumbnail

Distributed Systems

Concurrency and Consistency

Small thumbnail

Fatigue of Textile and Short Fiber Reinforced Composites

Durability and Ageing of Organic Composite Materials Set – Volume 1

Small thumbnail

Management of the Effects of Coastal Storms

Policy, Scientific and Historical Perspectives

Small thumbnail

Computational Color Science

Variational Retinex-like Methods

Small thumbnail

Numerical Methods

Volume 3 • Environmental Hydraulics Series

Edited by Jean-Michel Tanguy, Ministry of Sustainable Development, France

ISBN: 9781848211551

Publication Date: October 2010   Hardback   416 pp.

215.00 USD


Add to cart

eBooks


Ebook Ebook

Description

The study and management of water resources – especially the quantitative approach taken through the science of hydraulics and hydrology – is becoming increasingly important as those resources are affected by increasing population and development, the demands and consumption of industry, pollution, and climate change. Since the existence of water in the environment is also related to the role it plays in many other processes – from weather phenomena and climate, including heat transport in the atmosphere and oceans, to shaping the physical geography and geology of the landscape of rivers, plains, and coastal regions through erosion and deposition – this is a complex and interrelated field relating ecosystems, geography, climate, and planning and development among other topics.
This series of five volumes focused on environmental hydraulics studies the complete water (or hydrologic) cycle from meteorology to coastal morpho-dynamics, including looking at river hydraulics, hydrogeology and marine hydraulics. It describes these physical processes, and how they are observed in the real world, from catchment basins or watersheds where precipitation first falls, all the way through the transport of water to the sea. An inventory of ground measurement instruments, which provide necessary input data for the various modeling tools described in the book, is drawn up, and mathematical models describing each field within the overall subject area are detailed by a series of system equations. These are then solved by the use of numerical methods adapted to the particular characteristics of the application in question.
Many of the key modeling tools used by engineers in practice in the field are described in detail, as well as numerous examples of the application of the methods to real world problems, presented as case studies that highlight all of the processes described above.
Volume 3 focuses on the main numerical methods used in each major scientific field within the discipline to translate mathematical models into numerical tools, and hence to solve the problems posed by real-world scenarios.

Contents

Part 1. General Considerations Concerning Numerical Tools
1. Feedback on the Notion of a Model and the Need for Calibration, Denis Dartus.
2. Engineering Model and Real-Time Model, Jean-Michel Tanguy.
3. From Mathematical Model to Numerical Model, Jean-Michel Tanguy.
Part 2. Discretization Methods,
4. Problematic Issues Encountered, Marie-Madeleine Maubourguet.
5. General Presentation of Numerical Methods, Serge Piperno and Alexandre Ern.
6. Finite Differences, Marie-Madeleine Maubourguet and Jean-Michel Tanguy.
7. Introduction to the Finite Element Method, Jean-Michel Tanguy.
8. Presentation of the Finite Volume Method, Alexandre Ern and Serge Piperno, section 8.6 written by Dominique Thiéry.
9. Spectral Methods in Meteorology, Jean Coiffier.
10. Numerical-Scheme Study, Jean-Michel Tanguy.
11. Resolution Methods, Marie-Madeleine Maubourguet.
Part 3. Introduction to Data Assimilation
12. Data Assimilation, Jean Pailleux, Denis Dartus, Xijun Lai, Jérôme Monnier and Marc Honnorat.
13. Data Assimilation Methodology, Hélène Bessière, Hélène Roux, François-Xavier Le Dimet and Denis Dartus.

About the Authors

Jean-Michel Tanguy is a French civil engineer who passed a master degree in Ice Hydraulics and a PhD in River Sediment Transport Modeling at Laval University, Quebec.

Downloads

DownloadTable of Contents - PDF File - 145 Kb

Related Titles



































0.02347 s.