General

Authors

Search


Committee login



 
 

 


 

 

Forthcoming

Small thumbnail

Dynamics of Large Structures and Inverse Problems

Mathematical and Mechanical Engineering Set Volume 5

Small thumbnail

Civil Engineering Structures According to the Eurocodes

Small thumbnail

Swelling Concrete in Dams and Hydraulic Structures

DSC 2017

Small thumbnail

Earthquake Occurrence

Short- and Long-term Models and their Validation

Small thumbnail

The Chemostat

Mathematical Theory of Microorganims Cultures

Small thumbnail

From Prognostics and Health Systems Management to Predictive Maintenance 2

Knowledge, Traceability and Decision

Small thumbnail

First Hitting Time Regression Models

Lifetime Data Analysis Based on Underlying Stochastic Processes

Small thumbnail

The Innovative Company

An Ill-defined Object

Small thumbnail

Reading and Writing Knowledge in Scientific Communities

Digital Humanities and Knowledge Construction

Small thumbnail

Going Past Limits To Growth

A Report to the Club of Rome EU-Chapter

Small thumbnail

Benefits of Bayesian Network Models

Systems Dependability Assessment Set Volume 2

Philippe Weber, University of Lorraine, France Christophe Simon, Research Centre for Automatic Control, Nancy, France

ISBN: 9781848219922

Publication Date: August 2016   Hardback   146 pp.

125.00 USD


Add to cart

eBooks


Ebook Ebook

Description

The application of Bayesian Networks (BN) or Dynamic Bayesian Networks (DBN) in dependability and risk analysis is a recent development. A large number of scientific publications show the interest in the applications of BN in this field.
Unfortunately, this modeling formalism is not fully accepted in the industry. The questions facing today's engineers are focused on the validity of BN models and the resulting estimates. Indeed, a BN model is not based on a specific semantic in dependability but offers a general formalism for modeling problems under uncertainty.
This book explains the principles of knowledge structuration to ensure a valid BN and DBN model and illustrate the flexibility and efficiency of these representations in dependability, risk analysis and control of multi-state systems and dynamic systems.
Across five chapters, the authors present several modeling methods and industrial applications are referenced for illustration in real industrial contexts.

Contents

Part 1. Bayesian Networks.
1. Bayesian Networks: a Modeling Formalism for System Dependability.
2. Bayesian Network: Modeling Formalism of the Stucture Function of Boolean Systems.
3. Bayesian Network: Modeling Formalism of the Structure Function of Multi-State Systems.
Part 2. Dynamic Bayesian Networks.
4. Dynamic Bayesian Networks: Integrating Environmental and Operating Constraints in Reliability Computation.
5. Dynamic Bayesian Networks: Integrating Reliability Computation

About the Authors

Philippe Weber is Professor at the Engineer School of Sciences and Technologies at the University of Lorraine and at the Research Centre for Automatic Control in Nancy, France. His research concerns dependability and is mainly focused on probabilistic graphical models.
Christophe Simon is Associate Professor at the Research Centre for Automatic Control in Nancy, France. His research concerns dependability and is mainly focused on modeling engineering and uncertainties.

Downloads

DownloadTable of Contents - PDF File - 51 Kb

Related Titles



































0.03073 s.