General

Authors

Search


Committee login



 
 

 


 

 

Forthcoming

Small thumbnail

Materials and Thermodynamics

Living and Economic Systems

Small thumbnail

Mechanics of Aeronautical Composite Materials

Small thumbnail

Finite Physical Dimensions Optimal Thermodynamics 1

Fundamentals

Small thumbnail

Co-design in Living Labs for Healthcare and Independent Living

Concepts, Methods and Tools

Small thumbnail

Metaheuristics for Intelligent Electrical Networks

Metaheuristics Set – Volume 10

Small thumbnail

RCS Synthesis for Chipless RFID

Theory and Design

Small thumbnail

Fundamentals of Electronics 1

Electronic Components and Elementary Functions

Small thumbnail

Swift Ion Beam Analysis in Nanosciences

Small thumbnail

Inside Anthropotechnology

User and Culture Centered Experience

Small thumbnail

Ethics in Social Networking and Business 1

Theory, Practice and Current Recommendations

Small thumbnail

Fatigue of Textile and Short Fiber Reinforced Composites

Durability and Ageing of Organic Composite Materials Set – Volume 1

Valter Carvelli, Politecnico di Milano, Italy Atul Jain, Indian Institute of Technology Kharagpur, India Stepan Lomov, University of Leuven (KU Leuven), Belgium

ISBN: 9781786300218

Publication Date: March 2017   Hardback   212 pp.

120.00 USD


Add to cart

eBooks


Ebook Ebook

Description

This book covers several aspects of the fatigue behavior of textile and short fiber reinforced composites. The first part is dedicated to 2D and 3D reinforced textile composites and includes a systematic description of the damage evolution for quasi-static and tensile-tensile fatigue loadings. Acoustic emissions and digital image correlation are considered in order to detect the damage modes’ initiation and development. The acoustic emission thresholds of the quasi-static loading are connected to the “fatigue limit” of the materials with distinctions for glass and carbon reinforcements.
The second part is devoted to the fatigue behavior of injection molded short fiber reinforced composites. Experimental evidence highlights the dependence of their fatigue response on various factors: fiber and matrix materials, fiber distribution, environmental and loading conditions are described. A hybrid (experimental/simulations) multi-scale method is presented, which drastically reduces the amount of experimental data necessary for reliable fatigue life predictions.

Contents

Part 1. Fatigue of Textile Composites
1. Fatigue Behavior and Damage Evolution of 2D and 3D Textile-Reinforced Composites.
2. Fatigue Limit: A Link to Quasi-Static Damage?
Part 2. Fatigue of Short Fiber Reinforced Composites
3. Experimental Observations of Fatigue of Short Fiber Reinforced Composites.
4. Fatigue Modeling of SFRC: A Master SN Curve Approach.

About the Authors

Valter Carvelli has been Professor of Solid and Structural Mechanics at Politecnico di Milano in Italy since 2007. His main research activity is dedicated to the experimental measurement and numerical prediction of the mechanical properties of composites, with particular attention to the fatigue response.
Atul Jain currently teaches in the Department of Mechanical Engineering at the Indian Institute of Technology in Kharagpur. His interests lie in the intersection of manufacturing and mechanics of composites with a slight bias towards the latter.
Stepan Lomov is Professor in the Department of Materials Engineering at the University of Leuven (KU Leuven) in Belgium and coordinator of the Composite Materials Group. He is a specialist in the experimental and theoretical mechanics of composite materials and textiles.

Downloads

DownloadTable of Contents - PDF File - 181 Kb

































0.01734 s.