General

Authors

Search


Committee login



 
 

 


 

 

Forthcoming

Small thumbnail

Baidu SEO

Challenges and Intricacies of Marketing in China

Small thumbnail

Asymmetric Alliances and Information Systems

Issues and Prospects

Small thumbnail

Technicity vs Scientificity

Complementarities and Rivalries

Small thumbnail

Freshwater Fishes

250 Million Years of Evolutionary History

Small thumbnail

Biostatistics and Computer-based Analysis of Health Data using SAS

Biostatistics and Health Science Set

Small thumbnail

Predictive Control

Small thumbnail

Fundamentals of Advanced Mathematics 1

Categories, Algebraic Structures, Linear and Homological Algebra

Small thumbnail

Swelling Concrete in Dams and Hydraulic Structures

DSC 2017

Small thumbnail

The Chemostat

Mathematical Theory of Microorganims Cultures

Small thumbnail

Earthquake Occurrence

Short- and Long-term Models and their Validation

Small thumbnail

Systems Dependability Assessment

Modeling with Graphs and Finite State Automata

Jean-François Aubry and Nicolae Brinzei, University of Lorraine, France

ISBN: 9781848217652

Publication Date: February 2015   Hardback   196 pp.

75.00 USD


Add to cart

eBooks


Ebook Ebook

Description

This book presents the recent developments in probabilistic assessment of systems dependability based on stochastic models from graph theory, finite state automaton and language theory, to be applied across static, dynamic and hybrid contexts.
The first part of the book presents the foundations of coherence property represented by a state graph model to show how the reliability of a system may be determined. An algorithm with lower complexity than the classical approach (BDD decomposition for example) is proposed and extended to apply to non-coherent systems by introducing the concept of terminal tie-set.
In the second part, the authors introduce the model of finite state automaton to generally represent systems and replace the concepts of cut-sets and tie-sets by the concept of event sequences. The model is enriched progressively to define hybrid stochastic automaton that allows us to consider all of the problems usually assembled around the concept of dynamic reliability. Examples of Monte Carlo simulations are also presented.
This book targets engineering students interested in risk and dependability assessment and engineers working in aeronautics, space, energy, transportation and safety fields, as well as individuals with knowledge in applied mathematics and probability theory, and professionals in safety management.

Contents

Part 1. Predicted Reliability of Static Systems; A Graph-Theory Based Approach
1. Static and Time Invariant Systems with Boolean Representation.
2. Reliability of a Coherent System.
3. What About Non-Coherent Systems?
Part 2. Predicted Dependability of Systems in a Dynamic Context
4. Finite State Automaton.
5. Stochastic FSA.
6. Generalized Stochastic FSA.
7. Stochastic Hybrid Automaton.
8. Other Models/Tools for Dynamic Dependability versus SHA.

About the Authors

Jean-François Aubry is Professor Emeritus at the University of Lorraine, France. His research interests include control systems and safety engineering, dynamic reliability and reliability assessments.
Nicolae Brinzei is Associate Professor at the University of Lorraine, France. His research interests include probabilistic models, applied probability, stochastic modeling and hybrid systems.

Downloads

DownloadTable of Contents - PDF File - 43 Kb

Related Titles



































0.01901 s.