General

Authors

Search


Committee login



 
 

 


 

 

Forthcoming

Small thumbnail

Reliability Investigation of LED Devices for Public Light Applications

Durability, Robustness and Reliability of Photonic Devices Set

Small thumbnail

Aerospace Actuators 2

Signal-by-Wire and Power-by-Wire

Small thumbnail

Flash Memory Integration

Performance and Energy Considerations

Small thumbnail

Mechanics of Aeronautical Solids, Materials and Structures

Small thumbnail

Engineering Investment Process

Making Value Creation Repeatable

Small thumbnail

Space Strategy

Small thumbnail

Distributed Systems

Concurrency and Consistency

Small thumbnail

Fatigue of Textile and Short Fiber Reinforced Composites

Durability and Ageing of Organic Composite Materials Set Volume 1

Small thumbnail

Management of the Effects of Coastal Storms

Policy, Scientific and Historical Perspectives

Small thumbnail

Computational Color Science

Variational Retinex-like Methods

Small thumbnail

Systems Dependability Assessment

Modeling with Graphs and Finite State Automata

Jean-François Aubry and Nicolae Brinzei, University of Lorraine, France

ISBN: 9781848217652

Publication Date: February 2015   Hardback   196 pp.

75.00 USD


Add to cart

eBooks


Ebook Ebook

Description

This book presents the recent developments in probabilistic assessment of systems dependability based on stochastic models from graph theory, finite state automaton and language theory, to be applied across static, dynamic and hybrid contexts.
The first part of the book presents the foundations of coherence property represented by a state graph model to show how the reliability of a system may be determined. An algorithm with lower complexity than the classical approach (BDD decomposition for example) is proposed and extended to apply to non-coherent systems by introducing the concept of terminal tie-set.
In the second part, the authors introduce the model of finite state automaton to generally represent systems and replace the concepts of cut-sets and tie-sets by the concept of event sequences. The model is enriched progressively to define hybrid stochastic automaton that allows us to consider all of the problems usually assembled around the concept of dynamic reliability. Examples of Monte Carlo simulations are also presented.
This book targets engineering students interested in risk and dependability assessment and engineers working in aeronautics, space, energy, transportation and safety fields, as well as individuals with knowledge in applied mathematics and probability theory, and professionals in safety management.

Contents

Part 1. Predicted Reliability of Static Systems; A Graph-Theory Based Approach
1. Static and Time Invariant Systems with Boolean Representation.
2. Reliability of a Coherent System.
3. What About Non-Coherent Systems?
Part 2. Predicted Dependability of Systems in a Dynamic Context
4. Finite State Automaton.
5. Stochastic FSA.
6. Generalized Stochastic FSA.
7. Stochastic Hybrid Automaton.
8. Other Models/Tools for Dynamic Dependability versus SHA.

About the Authors

Jean-François Aubry is Professor Emeritus at the University of Lorraine, France. His research interests include control systems and safety engineering, dynamic reliability and reliability assessments.
Nicolae Brinzei is Associate Professor at the University of Lorraine, France. His research interests include probabilistic models, applied probability, stochastic modeling and hybrid systems.

Downloads

DownloadTable of Contents - PDF File - 43 Kb

Related Titles



































0.01922 s.