General

Authors

Search


Committee login



 
 

 


 

 

Forthcoming

Small thumbnail

Baidu SEO

Challenges and Intricacies of Marketing in China

Small thumbnail

Asymmetric Alliances and Information Systems

Issues and Prospects

Small thumbnail

Technicity vs Scientificity

Complementarities and Rivalries

Small thumbnail

Freshwater Fishes

250 Million Years of Evolutionary History

Small thumbnail

Biostatistics and Computer-based Analysis of Health Data using SAS

Biostatistics and Health Science Set

Small thumbnail

Predictive Control

Small thumbnail

Fundamentals of Advanced Mathematics 1

Categories, Algebraic Structures, Linear and Homological Algebra

Small thumbnail

Swelling Concrete in Dams and Hydraulic Structures

DSC 2017

Small thumbnail

The Chemostat

Mathematical Theory of Microorganims Cultures

Small thumbnail

Earthquake Occurrence

Short- and Long-term Models and their Validation

Small thumbnail

Random Vibration Third Edition

Mechanical Vibration and Shock Analysis Series Volume 3

Christian Lalanne

ISBN: 9781848216464

Publication Date: March 2014   Hardback   656 pp.

195.00 USD


Add to cart

eBooks


Ebook Ebook

Description

Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work!
This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to maintain structural integrity in the event of a crash. There are detailed examinations of underlying theory, models developed for specific applications, performance of materials under test conditions and in real-world settings, and case studies and discussions of how the relationships between these affect design for actual products.
Invaluable to engineers specializing in mechanical, aeronautical, civil, electrical and transportation engineering, this reference work, in five volumes is a crucial resource for the solution of shock and vibration problems.
The vast majority of vibrations encountered in a real-world environment are random in nature. Such vibrations are intrinsically complicated, but this volume describes the process enabling the simplification of the analysis required, and the analysis of the signal in the frequency domain. Power spectrum density is also defined, with the requisite precautions to be taken in its calculation together with the processes (windowing, overlapping) necessary for improved results.A further complementary method, the analysis of statistical properties of the time signal, is described. This enables the distribution law of the maxima of a random Gaussian signal to be determined, and simplifies the calculation of fatigue damage to be made by avoiding the direct counting of peaks.

Contents

1. Statistical Properties of a Random Process.
2. Random Vibration Properties in the Frequency Domain.
3. RMS Value of Random Vibration.
4. Practical Calculation of Power Spectral Density.
5. Statistical Properties of Random Vibration in the Time Domain.
6. Probability Distribution of Maxima of Random Vibration.
7. Statistics of Extreme Values.
8. Response of a One-degree-of-freedom Linear System to Random Vibration.
9. Characteristics of the Response of a One-degree-of-freedom Linear System to Random Vibration.
10. First Passage at a Given Level of Response of a One-degree-of-freedom Linear System to a Random Vibration.

About the Authors

Christian Lalanne is a Consultant Engineer who previously worked as an expert at the French Atomic Energy Authority and who has specialized in the study of vibration and shock for more than 40 years. He has been associated with the new methods of drafting testing specifications and associated informatic tools.

Related Titles



































0.02010 s.