General

Authors

Search


Committee login



 
 

 


 

 

Forthcoming

Small thumbnail

Reliability Investigation of LED Devices for Public Light Applications

Durability, Robustness and Reliability of Photonic Devices Set

Small thumbnail

Aerospace Actuators 2

Signal-by-Wire and Power-by-Wire

Small thumbnail

Flash Memory Integration

Performance and Energy Considerations

Small thumbnail

Mechanics of Aeronautical Solids, Materials and Structures

Small thumbnail

Engineering Investment Process

Making Value Creation Repeatable

Small thumbnail

Space Strategy

Small thumbnail

Distributed Systems

Concurrency and Consistency

Small thumbnail

Fatigue of Textile and Short Fiber Reinforced Composites

Durability and Ageing of Organic Composite Materials Set – Volume 1

Small thumbnail

Management of the Effects of Coastal Storms

Policy, Scientific and Historical Perspectives

Small thumbnail

Computational Color Science

Variational Retinex-like Methods

Small thumbnail

VaR Methodology for Non-Gaussian Finance

FOCUS Series in Finance, Business and Management

Marine Habart-Corlosquet, University of West Brittany, Brest, France Jacques Janssen, Solvay Business School, Brussels, Belgium Raimondo Manca, University of Roma “La Sapienza”, Italy

ISBN: 9781848214644

Publication Date: April 2013   Hardback   176 pp.

80.00 USD


Add to cart

eBooks


Ebook Ebook

Description

With the impact of the recent financial crises, more attention must be given to new models in finance rejecting “Black-Scholes-Samuelson” assumptions leading to what is called non-Gaussian finance. With the growing importance of Solvency II, Basel II and III regulatory rules for insurance companies and banks, value at risk (VaR) – one of the most popular risk indicator techniques plays a fundamental role in defining appropriate levels of equities. The aim of this book is to show how new VaR techniques can be built more appropriately for a crisis situation.
VaR methodology for non-Gaussian finance looks at the importance of VaR in standard international rules for banks and insurance companies; gives the first non-Gaussian extensions of VaR and applies several basic statistical theories to extend classical results of VaR techniques such as the NP approximation, the Cornish-Fisher approximation, extreme and a Pareto distribution. Several non-Gaussian models using Copula methodology, Lévy processes along with particular attention to models with jumps such as the Merton model are presented; as are the consideration of time homogeneous and non-homogeneous Markov and semi-Markov processes and for each of these models.

Contents

1. Use of Value-at-Risk (VaR) Techniques for Solvency II, Basel II and III.
2. Classical Value-at-Risk (VaR) Methods.
3. VaR Extensions from Gaussian Finance to Non-Gaussian Finance.
4. New VaR Methods of Non-Gaussian Finance.
5. Non-Gaussian Finance: Semi-Markov Models.

About the Authors

Marine Habart-Corlosquet is a Qualified and Certified Actuary at BNP Paribas Cardif, Paris, France. She is co-director of EURIA (Euro-Institut d’Actuariat, University of West Brittany, Brest, France), and associate researcher at Telecom Bretagne (Brest, France) as well as a board member of the French Institute of Actuaries. She teaches at EURIA, Telecom Bretagne and Ecole Centrale Paris (France). Her main research interests are pandemics, Solvency II internal models and ALM issues for insurance companies.
Jacques Janssen is now Honorary Professor at the Solvay Business School (ULB) in Brussels, Belgium, having previously taught at EURIA (Euro-Institut d’Actuariat, University of West Brittany, Brest, France) and Telecom Bretagne (Brest, France) as well as being a director of Jacan Insurance and Finance Services, a consultancy and training company.
Raimondo Manca is Professor of mathematical methods applied to economics, finance and actuarial science at University of Roma “La Sapienza” in Italy. He is associate editor for the journal Methodology and Computing in Applied Probability. His main research interests are multidimensional linear algebra, computational probability, application of stochastic processes to economics, finance and insurance and simulation models.

Downloads

DownloadTables of Contents - PDF File - 115 Kb

Related Titles



































0.01942 s.