Committee login






Small thumbnail

Reliability Investigation of LED Devices for Public Light Applications

Durability, Robustness and Reliability of Photonic Devices Set

Small thumbnail

Aerospace Actuators 2

Signal-by-Wire and Power-by-Wire

Small thumbnail

Flash Memory Integration

Performance and Energy Considerations

Small thumbnail

Mechanics of Aeronautical Solids, Materials and Structures

Small thumbnail

Engineering Investment Process

Making Value Creation Repeatable

Small thumbnail

Space Strategy

Small thumbnail

Distributed Systems

Concurrency and Consistency

Small thumbnail

Fatigue of Textile and Short Fiber Reinforced Composites

Durability and Ageing of Organic Composite Materials Set Volume 1

Small thumbnail

Management of the Effects of Coastal Storms

Policy, Scientific and Historical Perspectives

Small thumbnail

Computational Color Science

Variational Retinex-like Methods

Small thumbnail

Quantum Networking

Rodney Van Meter, Keio University, Fujisawa, Japan

ISBN: 9781848215375

Publication Date: April 2014   Hardback   368 pp.

145.00 USD

Add to cart


Ebook Ebook


Quantum repeater networks enable and depend upon quantum teleportation to create quantum states over long distances using entanglement (the ability of distant quantum particles to share a state in a way no classical particles can). These networks will enhance classical computer security, improve the sensitivity of telescopes and other scientific instruments, and ultimately connect quantum computers together. With teleportation already demonstrated, repeater links maturing in the lab, and their unentangled cousins already deployed in metropolitan area networks as quantum key distribution systems, we stand on the threshold of a fundamentally new era in communications.
This book brings the reader into this world. It consists of four parts, flowing from background material to the applications of quantum networking, then taking the reader to the leading edge of current research on chaining quantum repeaters together to enable end-to-end quantum communication, before finishing with complex quantum networks consisting of many nodes connected in rich topologies.
The first part includes an overview, followed by three chapters of background on quantum information, classical networking, and quantum teleportation. The second part includes chapters on three classes of applications: quantum key distribution, distributed quantum computation, and the use of entangled states as physical reference frames. The focus then shifts to the bottom of the stack, beginning with physical entanglement experiments, and working up through an error-suppressing technique known as purification, enabling a complete explanation of the primary connection architectures: entanglement swapping, quantum error correction-based and asynchronous. The book finishes with three chapters on issues in multi-user, autonomous networks: multiplexing, routing, and internetworking architecture, featuring the Quantum Recursive Network Architecture (QRNA), followed by a coda discussing future directions for work in the field.


1. Overview.
Part 1. Fundamentals
2. Quantum Background.
3. Networking Background.
4. Teleportation.
Part 2. Applications
5. Quantum Key Distribution.
6. Distributed Digital Computation and Communication.
7. Entangled States as Reference Frames.
Part 3. Lines of Repeaters
8. Physical Entanglement and Link-Layer Protocols.
9. Purification.
10. Purification and Entanglement Swapping-Based 
11. Quantum Error Correction-Based Repeaters.
12. Finessing the Key Limitations.
Part 4. Networks of Repeaters
13. Resource Management and Multiplexing.
14. Routing.
15. Quantum Recursive Network Architecture.
16. Coda.

About the Authors

Rodney Van Meter is Associate Professor of Environment and Information Studies at Keio University, Fujisawa, Japan. His research areas include quantum computing and quantum networking, unconventional computing architectures, and large-scale distributed mass storage systems.


DownloadTable of Contents - PDF File - 59 Kb

0.03246 s.