General

Authors

Search


Committee login



 
 

 


 

 

Forthcoming

Small thumbnail

Dynamics of Large Structures and Inverse Problems

Mathematical and Mechanical Engineering Set – Volume 5

Small thumbnail

Civil Engineering Structures According to the Eurocodes

Small thumbnail

Swelling Concrete in Dams and Hydraulic Structures

DSC 2017

Small thumbnail

Earthquake Occurrence

Short- and Long-term Models and their Validation

Small thumbnail

The Chemostat

Mathematical Theory of Microorganims Cultures

Small thumbnail

From Prognostics and Health Systems Management to Predictive Maintenance 2

Knowledge, Traceability and Decision

Small thumbnail

First Hitting Time Regression Models

Lifetime Data Analysis Based on Underlying Stochastic Processes

Small thumbnail

The Innovative Company

An Ill-defined Object

Small thumbnail

Reading and Writing Knowledge in Scientific Communities

Digital Humanities and Knowledge Construction

Small thumbnail

Going Past Limits To Growth

A Report to the Club of Rome EU-Chapter

Small thumbnail

LTE-Advanced DRX Mechanism for Power Saving

FOCUS Series in Networks and Telecommunications

Scott A. Fowler and Naomi Yamada, Linköping University, Sweden Abdelhamid Mellouk, UPEC, France

ISBN: 9781848215320

Publication Date: August 2013   Hardback   128 pp.

65.00 USD


Add to cart

eBooks


Ebook Ebook

Description

Resource allocation and power optimization is a new challenge in multimedia services in cellular communication systems. To provide a better end-user experience, the fourth generation (4G) standard Long Term Evolution/Long Term Evolution-Advanced (LTE/LTE-Advanced) has been developed for high-bandwidth mobile access to accommodate today’s data-heavy applications. LTE/LTE-Advanced has adopted discontinuous reception (DRX) to extend the user equipment’s battery lifetime, thereby further supporting various services and large amounts of data transmissions.
By introducing the basics of mathematical analysis and performance evaluation of power-saving mechanisms in 3rd generation partnership project (3GPP) LTE and LTE-Advanced networks, the authors of this book aim to describe novel algorithms which could have better performance capabilities than previous methods.
Chapter 1 gives the basic theory description of the 3GPP LTE network and 3GPP DRX power saving mechanism, empirical measurements of LTE network traffic and an overview of the basic LTE DRX model in the field of power saving techniques. Chapter 2 provides steps for deriving a 2-state analytical model up to a 4-state DRX model. The third and final chapter summarizes alternative methods for the implementation of LTE DRX.

Contents

1. Basic Theory.
2. Analytical Semi-Markov Power-Saving Models.
3. Other Approaches for LTE Power Saving.

About the Authors

Scott A. Fowler is Associate Professor at Linköping University, Sweden, working with the Mobile Telecommunication (MT) group. He has served on several IEEE conferences/workshops as TPC to Chair, including Special Interest Groups coordinator for IEEE Communications Software (CommSoft) Technical Committee since 2012. His research interests include Quality of Service (QoS) support over heterogeneous networks, computer networks (wired, wireless), energy management, mobile computing, pervasive/ubiquitous, performance evaluation of networks and security.
Abdelhamid Mellouk is Full Professor at the University of Paris-Est Créteil VdM (UPEC, ex. Paris 12), Networks & Telecommunications (N&T) Department (IUT C/V) and LiSSi Laboratory in France. He is a founder of the Network Control Research activity with extensive international academic and industrial collaborations. His general area of research is in adaptive real-time control for high-speed new generation dynamic wired/wireless networking in order to maintain acceptable Quality of Service/Experience for added-value services.
Naomi Yamada is a research associate at Linköping University, Sweden.

Downloads

DownloadTables of Contents - PDF File - 43 Kb

Related Titles



































0.04502 s.