General

Authors

Search


Committee login



 
 

 


 

 

Forthcoming

Small thumbnail

Secure Connected Objects

Small thumbnail

Banach, Fréchet, Hilbert and Neumann Spaces

Analysis for PDEs Set Volume 1

Small thumbnail

Semi-Markov Migration Models for Credit Risk

Stochastic Models for Insurance Set Volume 1

Small thumbnail

Human Exposure to Electromagnetic Fields

From Extremely Low Frequency (ELF) to Radio Frequency

Small thumbnail

Enterprise Interoperability

INTEROP-PGSO Vision

Small thumbnail

Data Treatment in Environmental Sciences

Multivaried Approach

Small thumbnail

From Pinch Methodology to Pinch-Exergy Integration of Flexible Systems

Thermodynamics Energy, Environment, Economy Set

Small thumbnail

Exterior Algebras

Elementary Tribute to Grassmann's Ideas

Small thumbnail

Nonlinear Theory of Elastic Plates

Small thumbnail

Cognitive Approach to Natural Language Processing

Small thumbnail

Nanoscale Microwave Engineering

Optical Control of Nanodevices

Charlotte Tripon-Canseliet, University Pierre and Marie Curie (UPMC), France Jean Chazelas, Thales DMS (Defence Mission Systems) Division, France

ISBN: 9781848215870

Publication Date: February 2014   Hardback   144 pp.

70.00 USD


Add to cart

eBooks


Ebook Ebook

Description

Nanoscale Microwave Engineering targets new trends in microwave engineering by downscaling components and devices for industrial purposes such as miniaturization and function densification, in association with the new approach of activation by a confined optical remote control. It covers the fundamental groundwork of the structure, property, characterization methods and applications of 1D and 2D nanostructures, along with providing the necessary knowledge of atomic structure, how it relates to the material band-structure and how this in turn leads to the amazing properties of these structures. It thus provides new graduates and post-doctorates with a resource equipping them with the knowledge to undertake their research. The purpose of this book is to give readers the elements required to enter the world of nano-architects for microwave nanosystems.
The first chapter is dedicated to nanotechnology-based materials for ultrafast microwave applications and their interactions with light, before moving on to an exploration of EM material characterization at nanoscale in Chapter 2. The third chapter is devoted to nanotechnology-based components and devices, reviewing existing components and a stateoftheart with these technologies (active). Chapter 4 focuses on the engineering of new optically controlled microwave functions based on 2D and 1D semiconductor materials. Finally, the conclusion draws on various perspectives of this new field of optically controlled low dimensionality materials.

Contents

1. Nanotechnology-based Materials and their Interaction with Light.
2. Electromagnetic Material Characterization at Nanoscale.
3. Nanotechnology-based Components and Devices.
4. Nanotechnology-based Subsystems.

About the Authors

Charlotte Tripon-Canseliet is Associate Professor at University Pierre and Marie Curie (UPMC), France. She has been involved in the research of microwave photonics for eight years, specifically in the design of ultrafast integrated devices. Her research interest focuses on state-of-the-art evolution of microwave photonics devices.
Jean Chazelas is Scientific Director at Thales DMS (Defence Mission Systems) Division, UK. He is involved in the creation of international joint research laboratories and in numerous European and international projects and contracts in the field of microwaves, photonics and nanotechnologies.

Downloads

DownloadTable of Contents - PDF File - 184 Kb

































0.06057 s.