General

Authors

Search


Committee login



 
 

 


 

 

Forthcoming

Small thumbnail

Secure Connected Objects

Small thumbnail

Banach, Fréchet, Hilbert and Neumann Spaces

Analysis for PDEs Set Volume 1

Small thumbnail

Semi-Markov Migration Models for Credit Risk

Stochastic Models for Insurance Set Volume 1

Small thumbnail

Human Exposure to Electromagnetic Fields

From Extremely Low Frequency (ELF) to Radio Frequency

Small thumbnail

Enterprise Interoperability

INTEROP-PGSO Vision

Small thumbnail

Data Treatment in Environmental Sciences

Multivaried Approach

Small thumbnail

From Pinch Methodology to Pinch-Exergy Integration of Flexible Systems

Thermodynamics Energy, Environment, Economy Set

Small thumbnail

Exterior Algebras

Elementary Tribute to Grassmann's Ideas

Small thumbnail

Nonlinear Theory of Elastic Plates

Small thumbnail

Cognitive Approach to Natural Language Processing

Small thumbnail

Mathematical Foundations of Image Processing and Analysis 1

Jean-Charles Pinoli, Ecole Nationale Supérieure des Mines, Saint-Etienne, France

ISBN: 9781848215467

Publication Date: June 2014   Hardback   464 pp.

185.00 USD


Add to cart

eBooks


Ebook Ebook

Description

Mathematical Imaging is currently a rapidly growing field in applied mathematics, with an increasing need for theoretical mathematics.
This book, the first of two volumes, emphasizes the role of mathematics as a rigorous basis for imaging sciences. It provides a comprehensive and convenient overview of the key mathematical concepts, notions, tools and frameworks involved in the various fields of gray-tone and binary image processing and analysis, by proposing a large, but coherent, set of symbols and notations, a complete list of subjects and a detailed bibliography. It establishes a bridge between the pure and applied mathematical disciplines, and the processing and analysis of gray-tone and binary images. It is accessible to readers who have neither extensive mathematical training, nor peer knowledge in Image Processing and Analysis.
It is a self-contained book focusing on the mathematical notions, concepts, operations, structures, and frameworks that are beyond or involved in Image Processing and Analysis. The notations are simplified as far as possible in order to be more explicative and consistent throughout the book and the mathematical aspects are systematically discussed in the image processing and analysis context, through practical examples or concrete illustrations. Conversely, the discussed applicative issues allow the role of mathematics to be highlighted.
Written for a broad audience students, mathematicians, image processing and analysis specialists, as well as other scientists and practitioners the author hopes that readers will find their own way of using the book, thus providing a mathematical companion that can help mathematicians become more familiar with image processing and analysis, and likewise, image processing and image analysis scientists, researchers and engineers gain a deeper understanding of mathematical notions and concepts.

Contents

Part 1. An Overview of Image Processing and Analysis (IPA)
1. Gray-Tone Images.
2. Gray-Tone Image Processing and Analysis.
3. Binary Images.
4. Binary Image Processing and Analysis.
5. Key Concepts and Notions for IPA.
6. Mathematical Imaging Frameworks.
Part 2. Basic Mathematical Reminders for Gray-Tone and Binary Image Processing and Analysis
7. Basic Reminders in Set Theory.
8. Basic Reminders in Topology and Functional Analysis.
Part 3. The Main Mathematical Notions for the Spatial and Tonal Domains
9. The Spatial Domain.
10. The Tonal Domain.
Part 4. Ten Main Functional Frameworks for Gray Tone Images
11. The Algebraic and Order Functional Framework.
12. The Morphological Functional Framework.
13. The Integral Functional Framework.
14. The Convolutional Functional Framework.
15. The Differential Functional Framework.
16. The Generalized Functional Framework.
17. The Frequential Functional Framework.
18. The Multiscale Functional Framework.
19. The Variational Functional Framework.
20. The Probabilistic Functional Framework.

About the Authors

Jean-Charles Pinoli is Full Professor at Ecole Nationale Supérieure des Mines, Saint-Etienne, France.

Downloads

DownloadTable of Contents - PDF File - 63 Kb

Related Titles



































0.02026 s.