General

Authors

Search


Committee login



 
 

 


 

 

Forthcoming

Small thumbnail

Dynamics of Large Structures and Inverse Problems

Mathematical and Mechanical Engineering Set Volume 5

Small thumbnail

Civil Engineering Structures According to the Eurocodes

Small thumbnail

Swelling Concrete in Dams and Hydraulic Structures

DSC 2017

Small thumbnail

Earthquake Occurrence

Short- and Long-term Models and their Validation

Small thumbnail

The Chemostat

Mathematical Theory of Microorganims Cultures

Small thumbnail

From Prognostics and Health Systems Management to Predictive Maintenance 2

Knowledge, Traceability and Decision

Small thumbnail

First Hitting Time Regression Models

Lifetime Data Analysis Based on Underlying Stochastic Processes

Small thumbnail

The Innovative Company

An Ill-defined Object

Small thumbnail

Reading and Writing Knowledge in Scientific Communities

Digital Humanities and Knowledge Construction

Small thumbnail

Going Past Limits To Growth

A Report to the Club of Rome EU-Chapter

Small thumbnail

Tree-based Graph Partitioning Constraint

Xavier Lorca, Ecole des Mines de Nantes, France

ISBN: 9781848213036

Publication Date: June 2011   Hardback   256 pp.

96.00 USD


Add to cart

eBooks


Ebook Ebook

Description

Combinatorial problems based on graph partitioning enable us to mathematically represent and model many practical applications. Mission planning and the routing problems occurring in logistics perfectly illustrate two such examples. Nevertheless, these problems are not based on the same partitioning pattern: generally, patterns like cycles, paths, or trees are distinguished. Moreover, the practical applications are often not limited to theoretical problems like the Hamiltonian path problem, or K-node disjoint path problems. Indeed, they usually combine the graph partitioning problem with several restrictions related to the topology of nodes and arcs. The diversity of implied constraints in real-life applications is a practical limit to the resolution of such problems by approaches considering the partitioning problem independently from each additional restriction.
This book focuses on constraint satisfaction problems related to tree partitioning problems enriched by several additional constraints that restrict the possible partitions topology. On the one hand, this title focuses on the structural properties of tree partitioning constraints. On the other hand, it is dedicated to the interactions between the tree partitioning problem and classical restrictions (such as precedence relations or incomparability relations between nodes) involved in practical applications.
Precisely, Tree-based Graph Partitioning Constraint shows how to globally take into account several restrictions within one single tree partitioning constraint. Another interesting aspect of this book is related to the implementation of such a constraint. In the context of graph-based global constraints, the book illustrates how a fully dynamic management of data structures makes the runtime of filtering algorithms independent of the graph density.

Contents

Part 1. Constraint Programming and Foundations of Graph Theory
1. Introduction to Constraint Programming.
2. Graph Theory and Constraint Programming.
3. Tree Graph Partitioning.
Part 2. Characterization of Tree-based Graph Partitioning Constraints
4. Tree Constraints in Undirected Graphs.
5. Tree Constraints in Directed Graphs.
6. Additional Constraints Linked to Graph Partitioning.
7.The Case of Disjoint Paths.
8. Implementation of a Tree Constraint.
Part 3. Implementation: Task Planning
9. First Model in Constraint Programming.
10. Advanced Model in Constraint Programming.
11. Conclusion.
12. Perspectives and Criticisms.

About the Authors

Xavier Lorca is Associate Professor of Computer Science at the Ecole des Mines de Nantes in France and manages its research activities on Constraint Programming at the CNRS research lab LINA. Prior to his current position, he obtained his PhD in Constraint Programming from the University of Nantes in 2007.

Downloads

DownloadTable of Contents - PDF File - 43 Kb

Related Titles



































0.08475 s.