Committee login






Small thumbnail

Secure Connected Objects

Small thumbnail

Banach, Fréchet, Hilbert and Neumann Spaces

Analysis for PDEs Set Volume 1

Small thumbnail

Semi-Markov Migration Models for Credit Risk

Stochastic Models for Insurance Set Volume 1

Small thumbnail

Human Exposure to Electromagnetic Fields

From Extremely Low Frequency (ELF) to Radio Frequency

Small thumbnail

Enterprise Interoperability


Small thumbnail

Data Treatment in Environmental Sciences

Multivaried Approach

Small thumbnail

From Pinch Methodology to Pinch-Exergy Integration of Flexible Systems

Thermodynamics Energy, Environment, Economy Set

Small thumbnail

Exterior Algebras

Elementary Tribute to Grassmann's Ideas

Small thumbnail

Nonlinear Theory of Elastic Plates

Small thumbnail

Cognitive Approach to Natural Language Processing

Small thumbnail

Non-parametric Tests for Complete Data

Vilijandas Bagdonavicius, University of Vilnius, Lithuania. Julius Kruopis, University of Vilnius, Lithuania. Mikhail S. Nikulin, Institute of Mathematics, Bordeaux, France.

ISBN: 9781848212695

Publication Date: December 2010   Hardback   336 pp.

153.00 USD

Add to cart


Ebook Ebook


Statistical analysis of data sets usually involves construction of a statistical model of the distribution of data within the available sample and by extension the distribution of all data of the same category in the world. Statistical models are either parametric or non-parametric this distinction is based on whether or not the model can be described in terms of a finite-dimensional parameter and the models must be tested to ascertain whether or not they conform to the data, or are accurate.
This book addresses the testing of hypotheses in non-parametric models in the general case for complete data samples. Classical non-parametric tests (goodness-of-fit, homogeneity, randomness, independence) of complete data are considered, and explained. Tests featured include the chi-squared and modified chi-squared tests, rank and homogeneity tests, and most of the test results are proved, with real applications illustrated using examples. The incorrect use of many tests, and their application using commonly deployed statistical software is highlighted and discussed.
Theories and exercises are provided, making this book suitable for use in a one semester course in non-parametric statistics and tests.


1. Introduction.
2. Chi-squared Tests.
3. Goodness-of-fit Tests Based on Empirical Processes.
4. Rank Tests.
5. Other Non-parametric Tests.

About the Authors

Vilijandas Bagdonavicius is Professor of Mathematics at the University of Vilnius in Lithuania. His main research areas are statistics, reliability and survival analysis.
Julius Kruopis is Associate Professor of Mathematics at the University of Vilnius in Lithuania. His main research areas are statistics and quality control.
Mikhail S.Nikulin is a member of the Institute of Mathematics in Bordeaux, France.


DownloadTable of Contents - PDF File - 56 Kb

DownloadPreface - PDF File - 39 Kb

Related Titles

0.09095 s.