Committee login






Small thumbnail

Reliability Investigation of LED Devices for Public Light Applications

Durability, Robustness and Reliability of Photonic Devices Set

Small thumbnail

Aerospace Actuators 2

Signal-by-Wire and Power-by-Wire

Small thumbnail

Flash Memory Integration

Performance and Energy Considerations

Small thumbnail

Mechanics of Aeronautical Solids, Materials and Structures

Small thumbnail

Engineering Investment Process

Making Value Creation Repeatable

Small thumbnail

Space Strategy

Small thumbnail

Distributed Systems

Concurrency and Consistency

Small thumbnail

Fatigue of Textile and Short Fiber Reinforced Composites

Durability and Ageing of Organic Composite Materials Set – Volume 1

Small thumbnail

Management of the Effects of Coastal Storms

Policy, Scientific and Historical Perspectives

Small thumbnail

Computational Color Science

Variational Retinex-like Methods

Small thumbnail

Electron Transport in Nanostructures and Mesoscopic Devices

An Introduction

Thierry Ouisse, ENSPG, Grenoble, France

ISBN: 9781848210509

Publication Date: June 2008   Hardback   400 pp.

210.00 USD

Add to cart


Ebook Ebook


This book introduces researchers and students to the physical principles which govern the operation of solid-state devices whose overall length is smaller than the electron mean free path. In such quantum systems, electron wave behavior prevails, and transport properties must be assessed by calculating transmission amplitudes rather than microscopic conductivity. Emphasis is placed on detailing the physical laws that apply under these circumstances, and on giving a clear account of the most important phenomena. The coverage is comprehensive, with mathematics and theoretical material systematically kept at the most accessible level. The various physical effects are clearly differentiated, ranging from transmission formalism to the Coulomb blockade effect and current noise fluctuations. Practical exercises and solutions have also been included to facilitate the reader’s understanding.


1. Introduction.
2. Some Useful Concepts and Reminders.
3. Ballistic Transport and Transmission Conductance.
4. S-matrix Formalism.
5. Tunneling and Detrapping.
6. An Introduction to Current Noise in Mesoscopic Devices.
7. Coulomb Blockade Effect.
8. Specific Interference Effects.
9. Graphene and Carbon Nanotubes.
10. Appendices.

About the Authors

Thierry Ouisse was a researcher at CNRS (Centre National de la Recherche Scientifique, France), and is now professor at PHELMA (Grenoble INP). His research interests are in the area of semiconductor physics, mesoscopic device physics, near-field microscopy and wide bandgap semiconductors. He is the author of about 150 research papers and communications in these fields.


DownloadTable of Contents - PDF File - 169 Kb

DownloadIntroduction - PDF File - 545 Kb

Related Titles

0.02492 s.