General

Authors

Search


Committee login



 
 

 


 

 

Forthcoming

Small thumbnail

Baidu SEO

Challenges and Intricacies of Marketing in China

Small thumbnail

Asymmetric Alliances and Information Systems

Issues and Prospects

Small thumbnail

Technicity vs Scientificity

Complementarities and Rivalries

Small thumbnail

Freshwater Fishes

250 Million Years of Evolutionary History

Small thumbnail

Biostatistics and Computer-based Analysis of Health Data using SAS

Biostatistics and Health Science Set

Small thumbnail

Predictive Control

Small thumbnail

Fundamentals of Advanced Mathematics 1

Categories, Algebraic Structures, Linear and Homological Algebra

Small thumbnail

Swelling Concrete in Dams and Hydraulic Structures

DSC 2017

Small thumbnail

The Chemostat

Mathematical Theory of Microorganims Cultures

Small thumbnail

Earthquake Occurrence

Short- and Long-term Models and their Validation

Small thumbnail

Modeling and Simulation of Turbulent Flows

Roland Schiestel, Institut de Recherche sur les Phénomènes Hors Équilibre (IRPHE), Marseille, France

ISBN: 9781848210011

Publication Date: November 2007   Hardback   752 pp.

300 USD


Add to cart

eBooks


Ebook Ebook

Description

This book provides the fundamental bases for developing turbulence models on rational grounds. The main different methods of approach are considered, ranging from statistical modelling at various degrees of complexity to numerical simulations of turbulence. Each of these various methods has its own specific performances and limitations, which appear to be complementary rather than competitive. After a discussion of the basic concepts, mathematical tools and methods for closure, the book considers second order closure models. Emphasis is placed upon this approach because it embodies potentials for clarifying numerous problems in turbulent shear flows. Simpler, generally older models are then presented as simplified versions of the more general second order models. The influence of extra physical parameters is also considered. Finally, the book concludes by examining large Eddy numerical simulations methods. Given the book’s comprehensive coverage, those involved in the theoretical or practical study of turbulence problems in fluids will find this a useful and informative read.

Contents

1. Fundamentals of statistical modeling: basic physical concepts.
2. Turbulence transport equations for an incompressible fluid.
3. Mathematical tools.
4. Methodology for one point closures.
5. Homogeneous anisotropic turbulence.
6. Modeling of the Reynolds stress transport equations.
7. Turbulence scales.
8. Advanced closures: new directions in second order modeling.
9. Modeling the evolution equations of the turbulent fluxes of a passive scalar.
10. The passive scalar variance and its dissipation rate.
11. Simplified closures: two- and three-transport equation models.
12. Simplified closures: zero- and one-transport equation models.
13. Treatment of low Reynolds number turbulence.
14. Wall treatment: methods and problems.
15. Influence of Archimedean forces.
16. Remarks on the problems posed by the study of complex flows.
17. Variable density turbulent flows.
18. Multiple scales models.
19. Large Eddy simulations.
20. Synopsis on numerical methods.

About the Authors

Roland Schiestel is a Research Director at the National Center for Sciemtific Research (CNRS), Paris, France.

Downloads

DownloadTable of Contents - PDF File - 143 Kb

DownloadPreface - PDF File - 99 Kb

Related Titles



































0.13577 s.