General

Authors

Search


Committee login



 
 

 


 

 

Forthcoming

Small thumbnail

Baidu SEO

Challenges and Intricacies of Marketing in China

Small thumbnail

Asymmetric Alliances and Information Systems

Issues and Prospects

Small thumbnail

Technicity vs Scientificity

Complementarities and Rivalries

Small thumbnail

Freshwater Fishes

250 Million Years of Evolutionary History

Small thumbnail

Biostatistics and Computer-based Analysis of Health Data using SAS

Biostatistics and Health Science Set

Small thumbnail

Predictive Control

Small thumbnail

Fundamentals of Advanced Mathematics 1

Categories, Algebraic Structures, Linear and Homological Algebra

Small thumbnail

Swelling Concrete in Dams and Hydraulic Structures

DSC 2017

Small thumbnail

The Chemostat

Mathematical Theory of Microorganims Cultures

Small thumbnail

Earthquake Occurrence

Short- and Long-term Models and their Validation

Small thumbnail

Fatigue of Textile and Short Fiber Reinforced Composites

Durability and Ageing of Organic Composite Materials Set – Volume 1

Valter Carvelli, Politecnico di Milano, Italy Atul Jain, Indian Institute of Technology Kharagpur, India Stepan Lomov, University of Leuven (KU Leuven), Belgium

ISBN: 9781786300218

Publication Date: March 2017   Hardback   212 pp.

120.00 USD


Add to cart

eBooks


Ebook Ebook

Description

This book covers several aspects of the fatigue behavior of textile and short fiber reinforced composites. The first part is dedicated to 2D and 3D reinforced textile composites and includes a systematic description of the damage evolution for quasi-static and tensile-tensile fatigue loadings. Acoustic emissions and digital image correlation are considered in order to detect the damage modes’ initiation and development. The acoustic emission thresholds of the quasi-static loading are connected to the “fatigue limit” of the materials with distinctions for glass and carbon reinforcements.
The second part is devoted to the fatigue behavior of injection molded short fiber reinforced composites. Experimental evidence highlights the dependence of their fatigue response on various factors: fiber and matrix materials, fiber distribution, environmental and loading conditions are described. A hybrid (experimental/simulations) multi-scale method is presented, which drastically reduces the amount of experimental data necessary for reliable fatigue life predictions.

Contents

Part 1. Fatigue of Textile Composites
1. Fatigue Behavior and Damage Evolution of 2D and 3D Textile-Reinforced Composites.
2. Fatigue Limit: A Link to Quasi-Static Damage?
Part 2. Fatigue of Short Fiber Reinforced Composites
3. Experimental Observations of Fatigue of Short Fiber Reinforced Composites.
4. Fatigue Modeling of SFRC: A Master SN Curve Approach.

About the Authors

Valter Carvelli has been Professor of Solid and Structural Mechanics at Politecnico di Milano in Italy since 2007. His main research activity is dedicated to the experimental measurement and numerical prediction of the mechanical properties of composites, with particular attention to the fatigue response.
Atul Jain currently teaches in the Department of Mechanical Engineering at the Indian Institute of Technology in Kharagpur. His interests lie in the intersection of manufacturing and mechanics of composites with a slight bias towards the latter.
Stepan Lomov is Professor in the Department of Materials Engineering at the University of Leuven (KU Leuven) in Belgium and coordinator of the Composite Materials Group. He is a specialist in the experimental and theoretical mechanics of composite materials and textiles.

Downloads

DownloadTable of Contents - PDF File - 181 Kb

































0.01946 s.