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Figure 1.1. Suitable geographical areas for concentrated solar power
plant deployment (https://meteonorm.com/en/)

Figure 1.2. Solar field of heat generation in Branderslev (Denmark)



Figure 1.4. Solar furnace of CNRS at Odeillo-Font-Romeu. In the foreground,
the dish—Stirling module being tested
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Figure 1.5. Classification of solar power plants (Solar PACES 2020)
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Figure 1.6. Examples of various solar concentrators
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Figure 1.7. On the left, the beam-down concentration optics principle adapted from Gordon and
Feuermann 2019 and on the right the 17 MWy Yumen Xinneng industrial installation (China)

Case of parabolic troughs
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Figure 1.8. Heat to electric power conversion efficiency for linear
concentrators, selective surface: a = 0.95 and € = 0.1; | = 900 W/m?



Case of tower power plants
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Figure 1.9. Solar heat to electric power conversion efficiency for point concentrators, comparison
of conversion efficiency for two hypotheses of converter efficiency formulation, gray body: a = € =
0.9; 1 = 900 W/m®
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Figure 1.12. The various sub-systems of a parabolic trough solar power
plant with molten salt storage. Source DLR

Figure 1.13. Solar power plants ANDASOL 1.2 and 3 of 50 MWe (Spain)



Figure 1.14. A part of the hydraulic circuit of NOOR 1 power
plant (Morocco)

End pylon

\ Middle
= Motor in pylon
/ the pylon

Shared pylon

Figure 1.15. Example of solar collector assembly (SCA) in the parabolic trough solar power plant



Figure 1.16. /-shaped architecture of the hydraulic circuit of a PT
solar power plant

Figure 1.17. Mobile connections at the end of stacks of collectors
(NOOR 1 power plant, Morocco)
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Figure 1.18. Evolution of the size of parabolic-trough concentrators
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Figure 1.19. Principle of linear Fresnel concentrators (Ko 2019)
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Figure 1.20. Cross-section of a receiver for an LFC solar power plant,
example (Morin et al. 2012)
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Figure 1.21. Operating principle of eLlo LFC power plant and image
of the collectors



Figure 1.22. lvanpah solar power plant, three 130 MW, towers
(source: BrightSource Energy)

Figure 1.23. Gemasolar solar power plant, Spain, source SENER
(Sener 2020)
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Figure 1.24. Architecture of tower power plants with molten salt. Source: DLR

Figure 1.25. 50 MW, solar power plant in Delingha (China). Source: HELIOSCSP/Supcon
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Figure 1.26. Evolution of the thermal power of the solar receiver
from Thémis to NOOR 3
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Figure 1.27. Configuration of the heliostat fields of solar tower power plants

Figure 1.28. Heliostat field of 15 m?, 47.5 m”
and 178 m? (from left to right)
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Figure 1.29. Evolution of the height of solar power plant with the power of the receiver

Figure 1.30. On the left, the (25 kWe) Suncatcher, on the rights, the (10 kWe) Eurodish module
installed at PROMES, Font-Romeu
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Figure 1.31. HelioFocus parabolic concentrator of 500 m”. Source SBP
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Figure 1.32. Evolution of the installed power and of electricity generation
of solar thermal power plants (IEA 2020a)
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Figure 1.33. Energy consumption of the industry (360 EJ en 2014, 1 EJ = 1018 Joule) and part
of the heat at various temperature levels in this consumption
(IEA 2020b)
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Figure 1.34. Block diagram of a solar installation for steam generation. Parabolic trough
concentrators can be replaced by linear Fresnel concentrators
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Figure 1.35. Capacity factor of operating solar power plants depending on their storage capacity.
Source: IRENA Renewable cost database (IRENA 2019)

Onshore wind Solar PV Offshore wind Concentrating solar
power

0.4
Auction database
® LCOE database

03

2016 USD/kWh
(=)
N

01§ s

Fossil fuel cost range
0.0
O N ¥ © 9 o N ¥ © @@ 9 9 w S o v S
5 9 & © © 5 © © © © = Q S =)
S R R Qg K R ]I g R ] = I & S

Figure 1.36. Evolution of the levelized cost of electricity and medium value for onshore wind,
photovoltaic, offshore wind and concentrated solar power. Each point corresponds to a project.
Source: IRENA Renewable cost database and auction database (Irena 2019)
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Figure 1.37. Evolution of the levelized cost of solar electricity generated by thermal power plants
in the United States and national goals for 2030 (Murphy et al. 2019)
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Figure 1.38. Evolution of LCOE depending on DNI in 2018 and 2030 (Dersch et al. 2020). The
points correspond to the results of calculations for various sites
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Figure 1.39. Architecture of NOOR Midelt CSP-PV hybrid power plant,
Morocco (HELIOSCSP 2020)

Figure 1.40. Jemalong CSP Pilot Plant, pilot solar power plant using sodium
as heat transfer fluid (Vast Solar 2020)
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Figure 1.41. Block diagram of a solar power plant with solid heat transfer
medium associated with a combined cycle
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Figure 2.1. Simplified view of the Earth/Sun system
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Figure 2.2. Solar/zenith angle (SZA) and solar/azimuth angle (SAA)
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Figure 2.3. Error in the calculation of the position of the Sun, with respect to SPA, for SG, MICH,
ENEA and SG2 algorithms, throughout 1980-2030 (Blanc and Wald 2012)



Figure 2.4. Sun’s path in 2015 above the PROMES-CNRS laboratory,
calculated using the SG2 algorithm
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Figure 2.5. Annual variation of the extra-terrestrial irradiance
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Figure 2.6. Schematic representation of the relative optical air mass
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Figure 2.7. Spectral distribution of the extra-terrestrial irradiance and of the irradiance at the
ground for a USSA-76 and a 1.56 air mass (NREL data, https://www.nrel.gov/grid/solar-
resource/spectra-am1.5.html)
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Angular sensitivity of the measurement instrument
Angular sensitivity of the concentrator
Solar disk

\ A 7 (Zenith)

Solar field

Y (East)

>
¥ (South)

Figure 2.9. Schematic representation relative to DNI definition
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Figure 2.10. Left: image of two pyrheliometers on solar trackers. Right:

diagram of a pyrheliometer
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Figure 2.11. Two RSl installed at the PROMES-CNRS laboratory, Perpignan
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Figure 2.12. Example of the measurement of the solar profile using SAM (Odeillo)

a) SAM at PROMES-CNRS laboratory (Odeillo)  b) BPI CSR 460 sensor (Wilbert 2014)
— Visidyne — Black Photon Instruments

Figure 2.13. Systems for the measurement of circumsolar irradiance
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Figure 2.15. Approaches for solar resource forecasting, depending on the spatiotemporal
horizon (adapted from Ramirez and Vindel 2017)
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Figure 2.16. Forecasting examples at At = 30 min using DNI persistence (on the left) and clear-
sky index k. persistence (on the right), over three different days (sampling of measurements: 1
min)



Figure 2.17. The PROMES sky imager installed at Odeillo and several
HDR images acquired (after tone correspondence)
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Figure 2.18. Forecasting examples of DNI at At = 15 min, using a DNI persistence (upper

image) and a sky imager (lower image), in the case of a good forecasting of the cloud motion
(sampling of measurements: 1 min; temporal resolution step of the forecasting: 20 s)



Figure 3.1. Archimedes’ Burning Mirrors, fresque by Giulio Parigi
(1571-1635), Uffizi Gallery, Florence

Lavoisier’s lens concentrator (1774)
(Bibliothéque Nationale.)

Figure 3.2. The burning mirror of Louis XIV (upper left), the segmented concentrator of Buffon
(upper right), the “water-based” concentrator of Lavoisier (lower left) and the steam engine of
Augustin Mouchot (lower right)
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Figure 3.3. Large 1,000 kW solar furnace at Odeillo: overview, images of the parabolic
concentrator and images of the field of flat heliostats
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Figure 3.5. The various components of Themis solar power tower
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Figure 3.7. Fundamental parameters of the collecting and receiving surfaces
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Figure 3.9. Definition of the concentration factor C using the
ratio of irradiances
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Figure 3.10. Definition of the concentration factor C by the ratio of solid angles
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Figure 3.11. Calculation of the maximal irradiance at the focal point of a concentrator
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Figure 3.12. Two-stage energy concentrating system (Gleckman 1988)
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Figure 3.13. Error sources specific to solar concentrators
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Figure 3.15. False color representation of various types
of local surface errors

Figure 3.16. Visualization of the adjustment errors of a flat heliostat
(Hénault 1989)
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Figure 3.17. lllustration of the open-loop control mode (on the left) or
closed-loop control mode (on the right)
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Figure 3.18. Open-loop control of a heliostat of a tower power plant
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Figure 3.20. Concentration and temperature error depending on angular
errors ¢ (Hénault 2015)
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Figure 3.21. Schematic representation of the physical phenomena affecting
global optical efficiency



Figure 3.22. Optical qualification test, evaluation of ke (Fasquelle et al. 2017)
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Figure 3.23. Example of optical qualification (Valenzuela et al. 2014)
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Figure 3.25. Schematic representation of optical losses due to cosine effect
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Figure 3.28. Optical losses due to atmospheric attenuation
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Figure 3.29. Optical losses due to spillage
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Figure 3.30. Northern/Southern fields and surrounding fields
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Figure 3.32. Heliostat field simulated by SolarPILOT software for a 100 MWth average power
incident on the solar receiver. The tower height is 120 m, and the surface area of heliostats is 49
m?. The right scale reflects the optical efficiency of heliostats
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Figure 4.1. Schematic representation of an absorber tube and its
components (Espinosa-Rueda et al. 2016)
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Figure 4.2. Thermal phenomena in an absorber tube

Figure 4.4. Diagram and image of a circular flat receiver



i\ Storage -i Power block
" 1
Receiver " "
n  Molten Turbine
Optical collection " salts loop "
n "
" 1"
" o 1"
" b

1asuapuo)

1
1
1
i
i
i
i
1
" o if GV '
|
i
i
i
1
|
1

s LEm st B

Figure 4.6. Schematic diagram of a tower power plant using molten
salt as the heat transfer fluid (Grange 2012)

Figure 4.7. Gemasolar, tower power plant with molten salt
near Seville, Spain (Ho 2017)
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Figure 4.8. Schematic diagram of a tower power plant with water-steam
as the heat transfer fluid (Grange 2012)

Figure 4.9. PS10 (left) and PS20 (right) near Seville, Spain



Figure 4.10. Ilvanpah tower power plant (Ho 2017)
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Figure 4.11. Schematic representation of a receiver (Grange 2012)
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Figure 4.12. Schematic representation of a surface receiver (Grange 2012)
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Figure 4.13. Schematic diagram of a tower power plant with pressurized air as the heat transfer
fluid coupled with a gas turbine (Grange 2012)




Sun

Heliostats

Figure 4.14. Principle of a solar receiver with the vertical transport of dense fluidized gas—
particle suspension subjected to concentrated solar radiation (Boissiére 2015)

Figure 4.15. Images of inserts allowing the increase in the residence time
of the particles subjected to concentrated solar radiation (Ho et al. 2017)
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Figure 4.16. Principle of the centrifugal particle receiver
(Prosin 2015)
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Figure 4.17. Schematic representation of thermal losses in a
solar cavity receiver
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Figure 4.22. Air flow in the absorber modules (Grange 2012)

Figure 4.23. Mapping of wall temperatures (upper part in black) and outgoing air temperatures
(lower part in red) for each element of the discretization. Air flow is symbolized by arrows;
temperatures in °C (Grange 2012)
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Figure 5.1. Schematic representation of the continuity of the
heat flux at the fluid—wall interface in 1D geometry
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Figure 5.4. Reynolds number depending on the temperature for liquid heat
transfer fluids flowing at 2 m/s in a tube receiver (Benoit et al. 2016)
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Figure 7.3. Theoretical spectral reflectance of pure metals in the solar range
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Figure 8.2. Andasol power plant; the storage tanks are visible
in the upper right
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Figure 8.3. Simplified diagram of the components of Andasol power

plant (Odru et al. Forthcoming)
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Figure 8.5. Process diagram of the power plant in Ait-Baha (Good et al. 2014)




Figure 8.6. Eco-Stock thermocline storage used to store 2 MWh heat
on an industrial site (Eco-Tech Ceram)
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Figure 8.7. Diagram of thermocline development
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Figure 8.9. Extraction of thermocline during charging (Fasquelle 2017)
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Figure 8.12. Diagram of a solar power plant with direct steam
generation (Odru et al. Forthcoming)



Figure 8.13. Four steam accumulators of the PS10 power plant (Abengoa Solar)

Figure 8.14. Image of the storage tanks of eLLO power plant (SUNCNIM)
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Figure 8.16. Diagram of a solar power plant with fluidized bed (adapted from Grange
et al. 2020)

Figure 8.17. Pilot PCM storage by CEA-Liten (Garcia et al. 2015)
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Figure 9.1. Cost and dispatchability comparison between PV technologies (with and without
storage), CSP systems and hybrid PV/CSP systems (source: FOCUS n.d.)

Figure 9.3. An artist’s view of the non-compact hybrid PV—CSP power plant
of Copiap6 (Chile) (source: IEEE Spectrum n.d.)
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Figure 9.4. Schematic representation of a “high-temperature” integrated PV—CSP receiver. The
concentrated solar radiation is absorbed by a high-temperature PV module that is also a thermal
collector. Part of the incident solar energy is directly converted into electricity while the rest is
transferred in the form of heat to the thermal collector (Branz et al. 2015)
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Figure 9.6. Temperature coefficient of V¢ as a function of the solar concentration ratio, for a
InGaP/InGaAs/Ge multi-junction solar cell (Braun et al. 2013)
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2018)
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Figure 9.8. Open circuit voltage (Voc), fill factor (FF) and conversion efficiency of a
GalnP/GalnAs tandem cell as a function of solar concentration and for temperatures ranging
between 25°C and 400°C (Perl et al. 2018)

4FO{eﬂected Transmitted Reflected
T i B B e e

b

35
—— PV cell spectral efficiency

—— CSP efficiency to direct light
------- Dichroic mirror cut-on/cut-off

30

Efficiency (%)
N
o
lIlI]IIIllII I|I|I|||||I|I|II||II

Glass 0 E . [ B

gSpectrum-splming film 400 800 1200 1600
Silicon PV cell
Backsheet

Wavelength (nm)

o B
o bbbl
o
o

(a) (b)
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Figure 9.12. /llustration of the PV + thermal storage + steam turbine
concept (Gordon et al. 2021)
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Figure 9.13. Schematic representation of the HEATS concept. The module consists of a stack of
several elements, notably a glass protection, an aerogel layer acting as thermal insulator,
spectrally selective light pipes, another aerogel layer and, finally, PV cells. The light pipes contain
parallel fins that are coated with a selective coating. These fins are attached to the light pipes, to
which they transmit the harvested heat. The latter is absorbed by the heat transfer fluid and is
then carried to the thermal storage system (Weinstein et al. 2018)
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Figure 9.14. lllustration of LSC concept. (a) The solar flux is concentrated on
photo-luminescent absorber. The radiation emitted by photo-luminescence (whose spectrum is
red shifted) is absorbed by a solar cell whose energy band gap is adapted, while the residual
heat (at 530°C) is stored to be injected in a turbine (Haviv et al. 2020)
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Figure 10.5. Indirect heating solar reactor for methane cracking
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Figure 10.7. Energy balance of the solar steam reforming of methane
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Figure 10.9. Solar reformer with direct heating: (a) schematic diagram, (b) assembled reactor,
(c) reactor installed on top of the solar tower at Weizmann Institute of Science in Israel (Agrafiotis
etal 2014)
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Figure 10.12. Evolution of the composition at thermodynamic equilibrium of synthetic gas during
wood gasification with water depending on the temperature (CeHgO4+2H20) (adapted from
Bellouard et al. 2020)



700
156 kd/mol (Enthalpy of the

gasification reaction provided
600 - by solar energy)

500

»53%
400

300 - Solar gasification

—-
200

Higher calorific value (kJ/mol)

>47%
100

0 -
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Screw feeder

/

Concentrated radiation

Injection of solid
reactants

Cooling circuit

Cone cavity Injection of gaseous

reactants

Figure 10.15. 3D view and schematic representation of the spouted bed reactor
(1.5 kW)



Low-temp electrolysis, High temperature ) )
Photofelectro)lysis electrolysis Thermochemical Thermolysis

Ll =

3007 H: €O, = CO + %O,

—_—

250 - ) e
H:H,0 = H, + %0,

-_—

200 -
2 150
100 1
50
0 T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000
T(C)

- 1.6

- 1.4

1.2

1.0

- 0.8

4
o

o
>

o
N

14
=}

abeyjoA 119D

Figure 11.1. Evolution of enthalpy and free energy associated with CO_ and

H>0 thermolysis as a function of temperature

50
S 4o
=3 Pl 2
3 C-based .~ 5\ L
> ’ ' i
ener s L :
230 tgy 11 6@ LPG :
> vectors, e NG
@ S 10 6® /i8v DMF :
2 / ,~~° 19 ®  methanol !
20 F R H !
E., / 4 110 @ ethanol
@ \
c
i}
1oF o1
: 5 :
‘oge /) 12 a3 o4 1
x0 h " 7 1
4 0‘\ _1 : L L o1 H
o | 20 40 60 “135 140 145!

Energy density by weight (MJ/kg)

Figure 11.2. Comparison of energy densities by weight and by volume

for various energy vectors (Centi and Perathoner 2011)



",’“’ H,0, CO,
| MO,=>MO,_+0.5y O,
T>1200°c ﬂ
<V
1 MO, +y CO,=>y CO+ MO,
Lo — idi —_—1
N MO, 4y H, 0=y Hy MO, Oxidizer
L T<1200°C
¥(1-g)H;  y(1{e)H,0
+yolCO +yo.CO,
1'7 v
0, H,, CO
Fuel Cell

Qe

Wee

Figure 11.3. Mass and energy diagram for a thermochemical cycle
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Figure 11.4. (a) ABOs perovskite structure; (b) reactivity of LSM perovskites doped with Al or Mg
at B site during two successive cycles (reduction under Ar at 1,400°C and oxidation under CO; at
1,050°C)

Figure 11.9. Diagram of the reactor with gravity-driven injection of particles
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Figure 11.11. (a) Diagram of CR5 reactor and (b) prototype of circulating dense bed reactor



