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Figure 1.1. Coulomb forces between two point and fixed charges q; and q.

Figure 1.2. Electrostatic field EM created by a fixed point charge q
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Figure 1.3. Circulation of the electrostatic field about a closed contour (C)



Figure 1.4. Continuous charge distributions

Figure 1.5. Electrostatic field lines

Figure 1.6. Charge q;, at the center O of a sphere with radius r
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Figure 1.7. a) Electrostatic dipole; b) field lines (in green) and
equipotential surfaces (in blue) of an electrostatic dipole

Figure 1.8. Current density vector at point M



Figure 1.9. Current density vector at point M’

Figure 1.10. Portion of a conductor with section s, traversed by a current with intensity
I

dB

Figure 1.11. Magnetic field dB created by an element with a length di of a circuit (C)
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Figure 1.12. Current distribution within volume V

Figure 1.13. Circulation of a magnetic field on a contour (C)

Figure 1.14. Magnetic dipole composed of a circular coil with magnetic moment M
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Figure 1.15. Analogy a) electric dipole; b) magnetic dipole

Figure 1.16. a) Magnet far from the coil axis: an electric current occurs;
b) magnet close to the axis of the current: an electric current occurs
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Figure 1.17. a) Portion AC of a conductor in motion in a magnetic field;
b) electric circuit equivalent to conductor A
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Figure 1.19. Conductors in equilibrium

Figure 1.20. Electrostatic field surrounding a flat charged surface



Figure 1.21. Conductors in equilibrium

Figure 1.22. Sources (S) of charges and currents

Figure 1.23. Surface S surrounding volume V containing charge carriers
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Figure 1.24. Electric and magnetic fields perpendicular and orthogonal
to the propagation direction of the progressive plane wave
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Figure 1.25. Perfect metal arranged vertically on the propagation
axis of a monochromatic progressive plane wave
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Figure 1.26. Structure of an electromagnetic stationary wave
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Figure 1.27. Most likely arrangement of dipole
moments of the most stable polar molecules

Figure 1.28. Dielectric medium with volume 7

Figure 1.29. Refraction of the electric displacement vector
across a vacuum-dielectric surface of separation
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Figure 1.30. Circulation of the electric field along an ABDF circuit
overlapping a vacuum-dielectric surface of separation
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Figure 1.32. Circulation of the excitation
magnetic vector on a closed contour (C)
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Figure 1.33. Refraction of the magnetic field crossing
a vacuum-magnetic medium surface of separation
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Figure 1.34. Circulation of the magnetic field along an ABDF circuit
overlapping a vacuum-magnetic medium surface of separation
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a) paramagnetism b) ferromagnetism c) anti- d) ferrimagnetism
ferromagnetism

Figure 1.35. lllustration of the different types of magnetism: a) magnetic moments
distributed irregularly; b) magnetic moments aligned in a Weiss domain (10 um to
1 m); ¢) antiparallel magnetic moments with equal intensities; d) antiparallel magnetic
moments with different intensities

Figure 2.1. Configuration of field lines of the electric field



Figure 2.2. Configuration of magnetic field lines
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Figure 2.3. Diagram depicting the propagation
of an electromagnetic wave
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Figure 2.4. The different polarization states
for a wave propagating in direction z
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Figure 2.5. Schematic of transpolarization
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Figure 2.6. Schematic representation of Fresnel zones
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Figure 2.7. Representation of the different Fourier
transforms on impulse response

Figure 2.8. Representation of the temporal evolution
of the propagation channel impulse response
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Figure 2.9. Evolution of the impulse response: turning a street corner
in the microcellular environment (Paris, 900 MHz, FTR&D sounder)
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Figure 2.10. Example of a power delay profile;
highlighted by the delay interval at X dB
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Figure 2.11. Example of a power delay profile;
highlighted by the delay window at y%
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Figure 2.12. Specific attenuation (dB/km) due to atmospheric
gases (O, and H,0) and total (ITU-R P.676)
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Figure 2.13. Specific attenuation (dB/km) due to rain

as a function of the frequency (ITU-R P.837)
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Figure 2.14. a) representation of specular reflection;
b) representation of diffuse reflection
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Figure 2.15a. Example of the variation of the real part of reflection
and transmission coefficients of wet soil at 1 GHz in
vertical (hard) and horizontal (soft) polarizations
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Figure 2.15b. Example of the variation of the modulus of the
reflection and transmission coefficients of wet soil at 1 GHz in
vertical (hard) and horizontal (soft) polarizations
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Figure 2.16. Difference in path created
by a surface irregularity with height H
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Figure 2.17. Two-line model
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Figure 2.18. Diagram showing the blocking of the reflected ray with an obstacle
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Figure 2.19. Diagram showing the path reflected on an island
to limit the effect of the reflected path on a maritime link
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Figure 2.20. Geometries associated with Descartes law
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Figure 2.21. Paths of radioelectric waves
as a function of refractivity gradient
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Figure 2.22. Representation of a sharp diffracting edge
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Figure 2.23. Attenuation due to diffraction off an edge
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Figure 2.24. Propagation of an electromagnetic
wave by tropospheric scattering
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Figure 2.25. Example of variation in the radioelectric
field due to tropospheric scattering
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Figure 2.26. Example of variation in the radioelectric field
due to reflection on layers of the atmosphere
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Figure 2.27. Example of variation in radioelectric
field due to the presence of ducts




Figure 2.28. Map of the topography (relief) in the Perpignan region, France
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Figure 2.29. Map of the topography (relief) in the Belfort region, France
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Figure 2.30. Schematic representation of the “transmitter-receiver” profile
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Figure 2.31. Definition of the angle between the street
axis and the direction of the incidence angle

Figure 2.32. Example of a “transceiver” profile



Figure 2.33. Example of urban coverage

Figure 2.34. Example of a representation of a residential environment
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Figure 2.35. Example of radioelectric coverage in a residential environment
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Figure 2.36. Schematic representation of a GSM TU channel with 12 paths
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Figure 2.37. Relations between the position of reflectors and diffusers
in the propagation environment; shape of the power time profile
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Figure 2.38. Spatiotemporal representation of the impulse response: a) angular power
profile, b) temporal power profile, c) mean spatio-temporal power distribution, the origin
of the angles corresponds to the pointing axis of the antenna at the base station
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Figure 2.39. Power profile according to Saleh and Valenzuela formalism
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Figure 2.40. Transmittance of the atmosphere due to molecular absorption
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Figure 2.41. Specific attenuation (dB/km) due to rain in the optical and infrared range
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Figure 2.42. Wet snow: attenuation as a function of precipitation rate at 1,550 nm
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Figure 2.43. Dry snow: attenuation as a function of precipitation rate at 1,550 nm
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Figure 2.44. Deviation of the laser beam under the influence of turbulence
cells greater than the beam diameter (deviation of the beam)
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Figure 2.45. Deviation of the laser beam under the influence of turbulence
cells smaller than the beam diameter (beam enlargement)
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Figure 2.46. Effects of different heterogeneities and different sizes
on the propagation of a laser beam (scintillations)
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Figure 2.47. Variation in attenuation linked to the scintillation as a function
of distance for different types of turbulence at 1.55 micron
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Figure 2.48a. Variation in specific attenuation at 850 nm as
a function of visibility (comparison with the Kruse’s model)
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Figure 2.48b. Variation in specific attenuation at 950 nm as a
function of visibility (comparison with the Kruse’'s model)
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Figure 2.49a. Variation in specific attenuation at 850 nm as
a function of visibility (comparison with Kim’s model)
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Figure 2.49b. Variation in specific attenuation at 950 nm
as a function of visibility (comparison with Kim’s model)
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Figure 2.50. Variation in specific attenuation at 850 nm as a function
of visibility (comparison with the Al Naboulsi advection model)
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Figure 2.51. Variation in specific attenuation at 850 nm as a function
of visibility (comparison with the Al Naboulsi convection model)
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Figure 2.52. Number of days a year in France with fog (visibility less than 1 km)



Figure 2.53. Sandstorm (source: Wikipedia)
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Figure 2.54. Variations in the MOR observed at the Turbie site on June 28, 2004
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Figure 2.55. Direct beam transmissometer
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Figure 2.56. Reflected beam transmissometer
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Figure 2.57. Diagram showing the measurement of visibility by backscatter
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Figure 2.58. Diagram showing the measurement of visibility by forward scatter










