Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Notations</td>
<td>xvii</td>
</tr>
<tr>
<td>Symbols</td>
<td>xix</td>
</tr>
<tr>
<td>Chapter 1. Thermodynamic Functions and Variables</td>
<td>1</td>
</tr>
<tr>
<td>1.1. State variables and characteristic functions of a phase</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1. Intensive and extensive conjugate variables</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2. Variations in internal energy during a transformation</td>
<td>3</td>
</tr>
<tr>
<td>1.1.3 Characteristic function associated with a canonical set of variables</td>
<td>5</td>
</tr>
<tr>
<td>1.2. Partial molar parameters</td>
<td>7</td>
</tr>
<tr>
<td>1.2.1. Definition</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2. Properties of partial molar variables</td>
<td>8</td>
</tr>
<tr>
<td>1.3. Chemical potential and generalized chemical potentials</td>
<td>8</td>
</tr>
<tr>
<td>1.3.1. Chemical potential and partial molar free enthalpy</td>
<td>8</td>
</tr>
<tr>
<td>1.3.2. Definition of generalized chemical potential</td>
<td>9</td>
</tr>
<tr>
<td>1.3.3. Variations in the chemical potential and generalized chemical potential with variables</td>
<td>10</td>
</tr>
<tr>
<td>1.3.4. Gibbs–Duhem relation</td>
<td>10</td>
</tr>
<tr>
<td>1.3.5. Generalized Helmholtz relations</td>
<td>11</td>
</tr>
<tr>
<td>1.3.6. Chemical system associated with the general system</td>
<td>12</td>
</tr>
<tr>
<td>1.4. The two modeling scales</td>
<td>14</td>
</tr>
</tbody>
</table>
CHAPTER 2. MACROSCOPIC MODELING OF A PHASE

2.1. Thermodynamic coefficients and characteristic matrices
2.1.1. Thermodynamic coefficients and characteristic matrix associated with the internal energy
2.1.2. Symmetry of the characteristic matrix
2.1.3. The thermodynamic coefficients needed and required to thermodynamically define the phase
2.1.4. Choosing other variables: thermodynamic coefficients and characteristic matrix associated with a characteristic function
2.1.5. Change in variable from one characteristic matrix to another
2.1.6. Relations between thermodynamic coefficients and secondary derivatives of the characteristic function
2.1.7. Examples of thermodynamic coefficients: calorimetric coefficients
2.2. Partial molar variables and thermodynamic coefficients
2.3. Common variables and thermodynamic coefficients
2.3.1. State equation
2.3.2. Expansion coefficients
2.3.3. Molar heat capacities
2.3.4. Young’s Modulus
2.3.5. Electric permittivity
2.3.6. Volumic and area densities of electric charge
2.4. Thermodynamic charts: justification of different types
2.4.1. Representation of a variable as a function of its conjugate
2.4.2. Representation of a characteristic function as a function of one of its natural variables
2.5. Stability of phases
2.5.1. Case of ensemble E_0 of extensive variables
2.5.2. Coefficients associated with ensemble E_n
2.5.3. Case of other ensembles of variables
2.5.4. Conclusion: stability conditions of a phase in terms of thermodynamic coefficients
2.5.5. Example – applying stability conditions
2.6. Consistency of thermodynamic data
2.7. Conclusion on the macroscopic modeling of phases
CHAPTER 3. MULTI-COMPOUND PHASES – SOLUTIONS

3.1. Variables attached to solutions
3.1.1. Characterizing a solution
3.1.2. Composition of a solution
3.1.3. Peculiar variables and mixing variables
3.2. Recap of ideal solutions
3.2.1. Thermodynamic definition
3.2.2. Molar Gibbs energy of mixing of an ideal solution
3.2.3. Molar enthalpy of mixing of the ideal solution
3.2.4. Molar entropy of mixing of the ideal solution
3.2.5. Molar volume of mixing
3.2.6. Molar heat capacity of ideal solution: Kopp’s law
3.3. Characterization imperfection of a real solution
3.3.1. Lewis activity coefficients
3.3.2. Characterizing the imperfection of a real solution by the excess Gibbs energy
3.3.3. Other ways to measure the imperfection of a solution
3.4. Activity of a component in any solution: Raoults and Henry’s laws
3.5. Ionic solutions
3.5.1. Chemical potential of an ion
3.5.2. Relation between the activities of ions and the overall activity of solutes
3.5.3. Mean concentration and mean ionic activity coefficient
3.5.4. Obtaining the activity coefficient of an individual ion
3.5.5. Ionic strength
3.6. Curves of molar variables as a function of the composition in binary systems of a solution with two components

CHAPTER 4. STATISTICS OF OBJECT COLLECTIONS

4.1. The need to statistically process a system
4.1.1. Collections, system description – Stirling’s approximation
4.1.2. Statistical description hypothesis
4.1.3. The Boltzmann principle
4.2. Statistical effects of distinguishable non-quantum elements
4.2.1. Distribution law
4.2.2. Calculation of α
4.2.3. Determining coefficient β
4.2.4. Energy input to a system
4.2.5. The Boltzmann principle for entropy 96
4.3. The quantum description and space of phases 97
 4.3.1. Wave functions and energy levels 97
 4.3.2. Space of phases: discernibility of objects and states 98
 4.3.3. Localization and non-localization of objects 98
4.4. Statistical effect of localized quantum objects 99
4.5. Collections of non-localized quantum objects 100
 4.5.1. Eigen symmetrical and antisymmetric functions
 of non-localized objects 101
 4.5.2. Statistics of non-localized elements with symmetrical
 wave functions .. 103
 4.5.3. Statistics of non-localized elements with an
 asymmetric function .. 105
 4.5.4. Classical limiting case 107
4.6. Systems composed of different particles without
 interactions .. 107
4.7. Unicity of coefficient β 108
4.8. Determining coefficient α in quantum statistics 110

CHAPTER 5. CANONICAL ENSEMBLES AND
THERMODYNAMIC FUNCTIONS 113

 5.1. An ensemble ... 113
 5.2. Canonical ensemble .. 114
 5.2.1. Description of a canonical ensemble 114
 5.2.2. Law of distribution in a canonical ensemble 115
 5.2.3. Canonical partition function 116
 5.3. Molecular partition functions and canonical partition functions
 5.3.1. Canonical partition functions for ensembles of discernable
 molecules ... 117
 5.3.2. Canonical partition functions of indiscernible molecules .. 118
 5.4. Thermodynamic functions and the canonical partition function
 5.4.1. Expression of internal energy 120
 5.4.2. Entropy and canonical partition functions 121
 5.4.3. Expressing other thermodynamic functions and thermodynamic
 coefficients in the canonical ensemble 123
 5.5. Absolute activity of a constituent 125
 5.6. Other ensembles of systems and associated
 characteristic functions 127
CHAPTER 6. MOLECULAR PARTITION FUNCTIONS 131

6.1. Definition of the molecular partition function 131
6.2. Decomposition of the molecular partition function into partial
partition functions ... 131
6.3. Energy level and thermal agitation. 133
6.4. Translational partition functions 134
 6.4.1. Translational partition function with the only
constraint being the recipient ... 135
 6.4.2. Translational partition function with the
constraint being a potential centered and the container walls ... 137
6.5. Maxwell distribution laws .. 139
 6.5.1. Distribution of ideal gas molecules in volume 139
 6.5.2. Distribution of ideal gas molecules in velocity 140
6.6. Internal partition functions .. 142
 6.6.1. Vibrational partition function 142
 6.6.2. Rotational partition function 144
 6.6.3. Nuclear partition function and correction of
symmetry due to nuclear spin ... 146
 6.6.4. Electronic partition function 149
6.7. Partition function of an ideal gas 149
6.8. Average energy and equipartition of energy 150
 6.8.1. Mean translational energy 151
 6.8.2. Mean rotational energy ... 152
 6.8.3. Mean vibrational energy 152
6.9. Translational partition function and quantum mechanics 153
6.10. Interactions between species .. 155
 6.10.1. Interactions between charged particles 155
 6.10.2. Interaction energy between two neutral molecules 156
6.11. Equilibrium constants and molecular partition functions 161
 6.11.1. Gaseous phase homogeneous equilibria 162
 6.11.2. Liquid phase homogeneous equilibria 164
 6.11.3. Solid phase homogeneous equilibria 166
6.12. Conclusion on the macroscopic modeling of phases 167

CHAPTER 7. PURE REAL GASES ... 169

7.1. The three states of the pure compound: critical point 169
7.2. Standard state of a molecular substance 170
7.3. Real gas – macroscopic description 171
 7.3.1. Pure gas diagram (P-V) .. 171
 7.3.2. “Cubic” state equations 172
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.3. Other state equations</td>
<td>177</td>
</tr>
<tr>
<td>7.3.4. The theorem of corresponding states and the generalized</td>
<td>180</td>
</tr>
<tr>
<td>compressibility chart</td>
<td></td>
</tr>
<tr>
<td>7.3.5. Molar Gibbs energy or chemical potential of a real gas</td>
<td>182</td>
</tr>
<tr>
<td>7.3.6. Fugacity of a real gas</td>
<td>183</td>
</tr>
<tr>
<td>7.3.7. Heat capacities of gases</td>
<td>186</td>
</tr>
<tr>
<td>7.4. Microscopic description of a real gas</td>
<td>188</td>
</tr>
<tr>
<td>7.4.1. Canonical partition function of a fluid</td>
<td>188</td>
</tr>
<tr>
<td>7.4.2. Helmholtz energy and development of the virial</td>
<td>195</td>
</tr>
<tr>
<td>7.4.3. Forms of the second coefficient of the virial</td>
<td>197</td>
</tr>
<tr>
<td>7.4.4. Macroscopic state equations and</td>
<td>202</td>
</tr>
<tr>
<td>microscopic description</td>
<td></td>
</tr>
<tr>
<td>7.4.5. Chemical potential and fugacity of a real gas</td>
<td>203</td>
</tr>
<tr>
<td>7.4.6. Conclusion on microscopic modeling of a real gas</td>
<td>204</td>
</tr>
<tr>
<td>7.5. Microscopic approach of the heat capacity of gases</td>
<td>206</td>
</tr>
<tr>
<td>7.5.1. Classical theorem from the equipartition of energy</td>
<td>207</td>
</tr>
<tr>
<td>7.5.2. Quantum theorem of heat capacity at constant volume</td>
<td>208</td>
</tr>
</tbody>
</table>

CHAPTER 8. GAS MIXTURES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1. Macroscopic modeling of gas mixtures</td>
<td>213</td>
</tr>
<tr>
<td>8.1.1. Perfect solutions of perfect gases</td>
<td>213</td>
</tr>
<tr>
<td>8.1.2. Mixture of real gases</td>
<td>215</td>
</tr>
<tr>
<td>8.2. Characterizing gas mixtures</td>
<td>217</td>
</tr>
<tr>
<td>8.2.1. Method of the state equations of gas mixtures</td>
<td>218</td>
</tr>
<tr>
<td>8.2.2. The Beattie–Bridgeman state equation</td>
<td>218</td>
</tr>
<tr>
<td>8.2.3. Calculating the compressibility coefficient of a mixture</td>
<td>222</td>
</tr>
<tr>
<td>8.2.4. Method using activity coefficients of solutions</td>
<td>225</td>
</tr>
<tr>
<td>8.3. Determining activity coefficients of a solution from an equation of state</td>
<td>225</td>
</tr>
<tr>
<td>8.3.1. Methodology</td>
<td>226</td>
</tr>
<tr>
<td>8.3.2. Studying solutions using the PSRK method</td>
<td>227</td>
</tr>
<tr>
<td>8.3.3. VTPR Model</td>
<td>230</td>
</tr>
<tr>
<td>8.3.4. VGTPR Model</td>
<td>233</td>
</tr>
</tbody>
</table>
Contents

APPENDICES 237

APPENDIX 1 239

APPENDIX 2 243

APPENDIX 3 245

APPENDIX 4 253

APPENDIX 5 257

BIBLIOGRAPHY 261

INDEX 265