Contents

Acknowledgments ... xi

Preface ... xiii

Introduction .. xvii

Part 1. Context ... 1

Introduction to Part 1 ... 3

Chapter 1. Recap of the Constraints Governing the Design of Antennas for an NFC Device ... 5

1.1. Normative constraints .. 6

1.1.1. Uplink from initiator to targets 7

1.1.2. Downlink from targets to initiator 8

1.1.3. “Contactless” standards versus NFC device antennas 10

1.1.4. Technologies ... 12

1.1.5. “NFC Forum Devices” and “NFC Forum Tags” 12

1.1.6. Modes of communication of an NFC Forum Device 14

1.1.7. Role of an NFC Forum Device 16

1.1.8. Beware of false advertising 17

1.2. Regulatory constraints ... 17

1.2.1. RF regulations ... 17

1.3. Constraints on the NFC market 18

1.4. Typological constraints of NFC 19

1.4.1. Application consequences and their direct constraints .. 20

1.5. Application constraints on antenna design 21
Chapter 2. Introduction to and Recap of the Principles Employed in NFC

2.1. The physical fundamentals of “contactless” and NFC
2.1.1. Phenomenon of propagation and radiation
2.1.2. Classification of fields and spatial regions
2.1.3. Spatial regions
2.1.4. Far field: \(r >> \lambda/2\pi \) (Fraunhofer zone)
2.1.5. Intermediary field: \(r \approx \lambda \) (Fresnel zone)
2.1.6. Near field: \(r \ll \lambda/2\pi \) (Rayleigh zone) … and by essence, the origin of the “NF – Near Field”, and hence NFC
2.1.7. Remarks on contactless, RFID and NFC application

2.2. The concept of NFC
2.2.1. Biot–Savart law
2.2.2. Field \(H \) at a point on the axis of a circular antenna
2.2.3. Decrease in the field \(H \) as a function of “d”
2.2.4. Field \(H \) at a point on the axis of a rectangular antenna

Part 2. Methods and Designs for NFC Device Antennas

Introduction to Part 2

Chapter 3. “Initiator” Antennas: Detailed Calculations

3.1. Introduction
3.1.1. There are initiators … and there are initiators
3.2. Design of an initiator antenna (without influence from the outside environment)
3.2.1. Operating mode
3.2.2. Instructive recap
3.2.3. Choice of integrated circuit
3.2.4. Legislational constraining aspects and EMC pollution
3.2.5. EMC filtering
3.2.6. Choice of target used and incidence of its \(H \) threshold
3.2.7. Determining the inductance value of the initiator antenna
3.2.8. Simple antenna ... 82
3.2.9. Matching circuit for the impedance
of the antenna .. 88
3.2.10. Calculating the current in the
antenna coil of the initiator 93
3.2.11. Summary and examples 96
3.2.12. Simulations .. 98
3.2.13. Value of the field H radiated by the antenna 100
3.2.14. Calculation and value of the working distance 101
3.3. Maximum quality coefficient Q of the initiator antenna 101
3.3.1. Q and cutoff of the field 103
3.3.2. Decrease in the ISO field 106
3.3.3. Measuring Q in the application 108
3.3.4. Measurement of the bandwidth in the application 109
3.4. Brief handbook on the process of
designing an antenna initiator 110

Chapter 4. Examples of Applications
of Initiator Antennas ... 113

4.1. Large antennas ... 113
4.1.1. Communication with a mono-NFC device
in “card emulation – battery-assisted” mode 114
4.1.2. Communication multi-NFC devices
in “tag batteryless” mode 114
4.2. Large antenna in mono-device 115
4.2.1. Mechanical formats of the NFC device targets 115
4.2.2. “Form factors” and sizes of antennas of the targets 115
4.2.3. Application distances required for operation 116
4.2.4. Estimation of the “loading effects” of
the distance or working range 117
4.2.5. Environment (copper, ferrite, battery, etc.) 117
4.2.6. Several measures for illustrating our proposal 117
4.2.7. H_d field necessary for the NFC device target 119
4.2.8. H_0 necessary to create at the antenna
level of the initiator ... 120
4.2.9. Power P (in watts) ... 120
4.2.10. Field H which must be produced by the
initiator for a specific ... 120
4.2.11. Definition of the initiator antenna:
format of the “landing area” of the reader (where
one puts the target) ... 121
4.2.12. “System” considerations of the application 121
4.2.13. Market integrated circuits for direct attack of the antenna 122
4.2.14. Booster amplifiers .. 124
4.2.15. Problem of the retro-modulation value 128
4.3. Large antennas in multi-antennas 130
4.3.1. In simultaneous mode (temporarily non-multiplexed) 130
4.3.2. In multiplexed mode temporarily 133
4.4. Large antennas in multi-devices 135
4.4.1. Conclusions .. 137
4.5. Other examples of initiator antennas 138

Chapter 5. Antennas for Targets and Tags: Detailed Calculations .. 141
5.1. Introduction: … there is a target and target 141
5.2. NFC Forum Tags .. 141
5.2.1. “Technology Subset” ... 142
5.3. Introduction to problems of antenna targets/tags 146
5.3.1. Tuning of the targets/tags 146
5.3.2. The inductance L ... 146
5.4. State-of-the-art of the antenna sizes 154
5.4.1. Sizes of the target antennas 155
5.4.2. Examples of applications of targets with antennas in ISO classes 157
5.5. Technological aspect of the NFC targets and tags 165
5.5.1. Data specific to integrated circuits for usage by NFC targets 165
5.5.2. Data specific to the additional capacities 165
5.5.3. Industrial data specific to antenna technology 165
5.5.4. Technology at stake .. 166
5.5.5. Estimation of the minimum number of antenna coils of the target to guarantee its remote power supply 171

Chapter 6. Detailed Examples of Designs of Target Antennas ... 173
6.1. Case of small antennas ... 173
6.1.1. Examples in classes 4, 5, 6… or close by 174
6.1.2. Example of design in class 5 175
6.1.3. Example ... 180
6.1.4. Example of design in class 6 182
6.2. Case of very small antennas 189
6.2.1. Example of design in classes 11, 12, 13 190
6.3. Case of the large NFC target/tag antennas: format A4 203
 6.3.1. NFC bib number antennas for marathon and triathlon runners .. 203
 6.3.2. Technical properties required by the NFC target/tag ... 204
6.4. Case of very large antennas targets: format A3 205
 6.4.1. Context and technical frame of the large antennas .. 205
 6.4.2. Retained concept .. 206
 6.4.3. Example of network with four antennas .. 213
 6.4.4. Simplification of the equation .. 216

Chapter 7. The Initiator–Target Couple and Its Couplings 233
 7.1. Circuits and their couplings ... 234
 7.1.1. Mutual induction and mutual inductance 235
 7.1.2. Perfect mutual .. 237
 7.1.3. Non-perfect mutual ... 238
 7.1.4. Coupling coefficient “k” 242
 7.2. Tuned circuits coupled by mutual induction 244
 7.2.1. Why “almost”? ... 245
 7.2.2. Coupling index “n” ... 246
 7.2.3. In conclusion, an important point 247
 7.3. Identical coupled circuits, tuned to the same frequency 248
 7.3.1. Transfer function, A(ω) = V2/V1, in terms of the voltage of the secondary 250
 7.3.2. Transmission coefficient “Kt” 251
 7.3.3. In summary .. 252
 7.3.4. Operation in the vicinity of the resonance frequency f0 .. 255

Chapter 8. The Initiator–Target Couple and the Loading Effect 271
 8.1. Loading effect by coupling .. 271
 8.2. Coupled tuned antennas in terms of the primary current 272
 8.2.1. Primary (initiator) non-loaded (no target within the field) ... 273
 8.2.2. Primary (initiator) with a load (presence of target(s) in the field) 274
 8.2.3. Value of R2 in view of the environment 277
 8.3. Some food for thought ... 278
 8.4. Loading effect .. 281