Contents

Introduction ... ix

Chapter 1. The “Mixed Modeling” Approach to Reinforced Structures ... 1

1.1. Mechanics of reinforced systems in the “mixed modeling” framework ... 2

1.1.1. Outline of the “mixed modeling” approach 2

1.1.2. An illustrative example .. 2

1.1.3. Mixed modeling in the context of material elastic behavior . . . 5

1.1.4. Extension to elastic–plastic behavior and yield design 12

1.2. Application to the stability analysis of reinforced soil structures . . . 18

1.2.1. Stability analysis of a reinforced vertical excavation 18

1.2.2. Stability analyses based on mechanisms involving deformation patterns ... 24

1.2.3. Practical consequences for the stability analysis of reinforced structures ... 28

1.3. Extensions and limitations of the mixed modeling approach . . . 32

1.3.1. A 2D/3D mixed modeling approach 32

1.3.2. Incorporation of a matrix/reinforcement interface behavior . . 35

1.3.3. A serious limitation to the 1D–3D mixed modeling approach . . . 36

Chapter 2. The Homogenization Approach: Reinforced Materials as Macroscopically Homogeneous Anisotropic Media ... 39

2.1. Fundamentals of the periodic homogenization method 40

2.1.1. Outline of the homogenization method applied to the design of reinforced structures 40
2.1.2. Macroscopic behavior of a periodically reinforced material: the auxiliary problem ... 41
2.2. Macroscopic longitudinal elastic shear stiffness of a column-reinforced material ... 47
 2.2.1. Problem statement ... 47
 2.2.2. Upper bound estimate for G_L 48
 2.2.3. Lower bound estimate for G_L 49
 2.2.4. Comparison with numerical simulation and Hashin–Rosen’s estimates ... 50
 2.2.5. Optimizing the reinforcement layout: the “cross-trench” configuration ... 52
2.3. Elastoplastic analysis of column-reinforced soil foundations ... 55
 2.3.1. A closed-form macroscopic elastoplastic constitutive law ... 55
 2.3.2. A first analytical example 60
 2.3.3. Numerical implementation of the approximate elastoplastic model ... 64
2.4. Yield design homogenization applied to reinforced soil structures ... 72
 2.4.1. Reinforced soil with purely cohesive constituents ... 73
 2.4.2. Reinforcement by “stone columns” ... 80

Chapter 3. Macroscopic Behavior of Materials Reinforced by Thin Highly Stiff/Resistant Linear Inclusions ... 93
 3.1. Macroscopic linear elastic behavior ... 94
 3.1.1. A two-dimensional multilayer model ... 94
 3.1.2. Extension to the case of elastic fiber-reinforced composites ... 100
 3.1.3. Synthesis of results: a simplified macroscopic stiffness tensor ... 104
 3.1.4. Numerical validation ... 106
 3.1.5. Two extended formulations of the macroscopic elastic behavior ... 111
 3.2. Macroscopic strength properties ... 119
 3.2.1. Plane strain multilayer model ... 119
 3.2.2. Generalization to multidirectional reinforced materials ... 126
 3.3. Macroscopic elastoplastic behavior ... 137
 3.3.1. Reinforced material as an anisotropic elastic perfectly plastic medium ... 138
 3.3.2. An improved strain hardening elastoplastic model ... 141
 3.4. Concluding remarks: toward a “multiphase” approach ... 150
Chapter 4. Mechanical Modeling of Reinforced Materials as Multiphase Systems

4.1. Construction of the multiphase model by the virtual work method
 4.1.1. Unidirectional reinforced material as a two-phase system
 4.1.2. Links with the “mixed modeling” and homogenization approaches

4.2. Linear elastic behavior
 4.2.1. Elastic constitutive equations and associated boundary value problem
 4.2.2. Revisiting the problem of shear-loaded reinforced layer
 4.2.3. Multiphase analysis of the reinforced block compression problem
 4.2.4. The multiphase approach as a generalized homogenization procedure

4.3. Elastoplastic behavior of reinforced structures described as two-phase systems
 4.3.1. Elastoplastic constitutive equations and statement of the associated boundary value problem
 4.3.2. Numerical implementation of the model

4.4. Yield strength of reinforced materials as multiphase media
 4.4.1. Statement of yield design problem relative to a two-phase system
 4.4.2. First examples of application

Chapter 5. Applications of the Multiphase Approach Part 1: Static and Dynamic Stiffness of Piled Raft Foundations

5.1. Evaluation of the static stiffness of piled raft foundations
 5.1.1. Statement of the problem
 5.1.2. Input data relative to the problem
 5.1.3. Numerical simulations and results

5.2. Evaluating the dynamic horizontal and rocking impedance of pile groups
 5.2.1. Impedance matrix of a pile group foundation
 5.2.2. Elastodynamics of reinforced soil as a two-phase system
 5.2.3. Horizontal impedance of a piled strip foundation

5.3. Vertical dynamic stiffness of square piled raft foundations
 5.3.1. Problem statement
 5.3.2. A multiphase model accounting for soil–pile interactions
 5.3.3. Identification of the multiphase model constitutive parameters
 5.3.4. Assessing the vertical impedance of the piled raft foundation
Chapter 6. Applications of the Multiphase Approach
Part 2: Load-Bearing Capacity and Stability Analysis of Reinforced Structures

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1. Multiphase model accommodating for elastoplastic interaction behavior</td>
<td>244</td>
</tr>
<tr>
<td>6.1.1. Statement of the elastoplastic boundary value problem</td>
<td>244</td>
</tr>
<tr>
<td>6.1.2. A numerical procedure for evaluating the soil pile interaction parameters</td>
<td>250</td>
</tr>
<tr>
<td>6.1.3. Identification of interaction parameters</td>
<td>255</td>
</tr>
<tr>
<td>6.1.4. Application to the load-bearing analysis of piled raft foundations</td>
<td>259</td>
</tr>
<tr>
<td>6.2. Stability analysis of reinforced structures using the multiphase yield design approach</td>
<td>266</td>
</tr>
<tr>
<td>6.2.1. Stability of a reinforced earth retaining wall</td>
<td>266</td>
</tr>
<tr>
<td>6.2.2. Seismic stability analysis of a piled embankment</td>
<td>275</td>
</tr>
</tbody>
</table>

Chapter 7. Yield Design of Reinforced Concrete Beams, Plates and Shells

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1. Composite beams in membrane-bending interaction</td>
<td>289</td>
</tr>
<tr>
<td>7.1.1. Formulation of the strength condition in terms of generalized stress variables: a homogenization procedure</td>
<td>289</td>
</tr>
<tr>
<td>7.1.2. An illustration on the case of reinforced concrete</td>
<td>292</td>
</tr>
<tr>
<td>7.1.3. On its use for yield design problems at the structure level</td>
<td>295</td>
</tr>
<tr>
<td>7.2. Reinforced plates in bending</td>
<td>295</td>
</tr>
<tr>
<td>7.2.1. Definition of the macroscopic bending strength criterion</td>
<td>297</td>
</tr>
<tr>
<td>7.2.2. An illustration on the case of reinforced concrete</td>
<td>300</td>
</tr>
<tr>
<td>7.2.3. On its use for yield design problems at the structure level</td>
<td>302</td>
</tr>
<tr>
<td>7.3. A proposed simplified extension to the yield design of shells</td>
<td>303</td>
</tr>
<tr>
<td>7.3.1. Generalized strength criteria of homogeneous shells</td>
<td>303</td>
</tr>
<tr>
<td>7.3.2. Extension to heterogeneous shells</td>
<td>308</td>
</tr>
<tr>
<td>7.3.3. Generalized yield lines</td>
<td>312</td>
</tr>
</tbody>
</table>

Bibliography

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>315</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>327</td>
</tr>
</tbody>
</table>