<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>Abbreviation Glossary</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>Chapter 1 General Points</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.1. Microwave photonic links</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.2. Link description</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>1.3. Signal to transmit</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1.3.1. Microwave signal</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1.3.2. Microwave carrier for a digital signal</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1.3.3. UWB signal</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>1.3.4. Optical carrier</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>1.3.5. Summary</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>1.4. Limitations of microwave photonic links</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>1.4.1. Limitations due to the materials constituting the different elements</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>1.4.2. Noise sources in microwave photonic links</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>1.4.3. Nonlinearities</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>1.5. The components and characteristics of microwave photonic links</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Chapter 2 Generation and Modulation of Light</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2.1. Laser</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2.1.1. General points</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2.1.2. Semiconductor laser structure and optical gain in the active zone</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>2.1.3. Operation of a Fabry-Perot laser</td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>
2.1.4. Optical confinement factor and rate equations. 21
2.1.5. Static mode of laser operation
(or CW mode of operation). 24
2.1.6. Dynamic mode of laser operation:
RF small signal response 26
2.1.7. RIN laser noise 28
2.1.8. Increase in 1/f of RIN and superposition
of a small signal and noise 31
2.1.9. Different laser configurations 32
2.1.10. CAD laser models 41
2.1.11. Laser measurements and temperature stabilization 47
2.2. Electro-optic modulator: EOM 49
2.2.1. General physical principles 50
2.2.2. Pockels or linear electro-optical effect 50
2.2.3. Mach-Zehnder electro-optic modulator 53
2.2.4. Single-Drive MZM: one driving electrode 55
2.2.5. Dual-drive MZM: two driving electrodes 69
2.2.6. Real Mach-Zehnder modulator: characteristics
and performances 71
2.2.7. Mach-Zehnder modulator technology 73
2.3. Electro-absorption modulator: EAM 75
2.3.1. Electro-absorption effect 75
2.3.2. FKE 80
2.3.3. Stark effect 80
2.3.4. Quantum well structures 82
2.3.5. MEA operation 82
2.3.6. Characteristics of an EAM 85
2.3.7. EML: EAM integrated to a DFB laser 86
2.3.8. EAM electrical modeling for ultra-fast signal simulation 87

Chapter 3 Optical Fibers and Amplifiers 93
3.1. Optical fibers 93
3.1.1. General 93
3.1.2. Material attenuation 96
3.1.3. Material refraction index and dispersion 98
3.1.4. Total reflection, numerical aperture,
transmitted maximum frequency 100
3.1.5. Step-index fiber 105
3.1.6. Graded index fiber 107
3.1.7. Single-mode fiber 110
3.1.8. Plastic optical fibers 114
3.2. Optical amplifiers ... 118
 3.2.1. Semiconductor optical amplifiers: SOA. 119
 3.2.2. EDFAs ... 120
3.3. Appendix: modal analysis of propagation in a fiber 122
 3.3.1. Maxwell equations 122
 3.3.2. Maxwell equations in a cylindrical fiber 123
 3.3.3. Continuity and characteristic equation conditions ... 127
 3.3.4. Research of different propagation modes 128
 3.3.5. Approximation of linearly polarized modes 132

Chapter 4 Photodetectors ... 137
 4.1. Photodetector definition 137
 4.2. Photodiodes .. 138
 4.2.1. Presentation .. 138
 4.2.2. Light absorption in a semiconductor 139
 4.2.3. p-i-n photodiode 142
 4.2.4. Metal-semiconductor-metal or MSM photodiode 145
 4.2.5. Equivalent circuits for p-i-n and MSM photodiodes .. 147
 4.2.6. Nonlinearities 147
 4.2.7. UTC photodiodes 149
 4.2.8. Charge compensation 150
 4.2.9. Partially depleted absorption zone 151
 4.2.10. Lateral lighting 152
 4.2.11. Lateral lighting: progressive wave structure 153
 4.2.12. Lateral lighting: periodic structures 156
 4.2.13. Resonant optical cavity photodetector 157
 4.2.14. Diluted waveguides and evanescent mode coupling ... 160
 4.2.15. Summary .. 161
 4.3. Phototransistors .. 163
 4.3.1. Bipolar or field-effect phototransistors? 163
 4.3.2. GaAlAs/GaAs and InGaP/GaAs phototransistors 165
 4.3.3. InP/InGaAs phototransistors 167
 4.3.4. Si/SiGe phototransistors 172
 4.3.5. Resonant optical cavities for phototransistors 176
 4.3.6. Phototransistor simulations and models 176
 4.3.7. Influence of the base load impedance 180
 4.3.8. Summary .. 183
4.4. Appendix ... 184
 4.4.1. Lattice matched layers pseudomorphic layer, metamorphic layer .. 184
 4.4.2. Velocity overshoot effect 186
 4.4.3. Heterojunction bipolar phototransistor 188
Chapter 5 Performance of Microwave Photonic Links

5.1. Microwave photonic links: diagrams and definitions
5.1.1. Direct modulation link diagram and definitions
5.1.2. External modulation link diagram and definitions
5.1.3. Simplified link diagram and first gain computation

5.2. Optomicrowave S-parameters and gains of each photonic link component
5.2.1. Introduction
5.2.2. Optomicrowave laser S-parameters and optomicrowave gain
5.2.3. Optomicrowave optical fiber S-parameters and optomicrowave gain
5.2.4. Photodiode optomicrowave S-parameters and gain
5.2.5. Localized component external modulator optomicrowave S-parameters and gain
5.2.6. Distributed component external modulator optomicrowave S-parameters and gain
5.2.7. Summary of all S-parameters and optomicrowave gain

5.3. Microwave photonic links optomicrowave S-parameters and gains
5.3.1. Direct modulation microwave photonic link S-parameters
5.3.2. Direct modulation microwave photonic link gains
5.3.3. Localized external modulator microwave photonic link S-parameters
5.3.4. Localized external modulator microwave photonic link gains
5.3.5. Distributed external modulator microwave photonic link S-parameters
5.3.6. Distributed external modulator microwave photonic link gains
5.3.7. Link gain computation generalization

5.4. Comparison of different link gains
5.4.1. Direct modulation link gain computation
5.4.2. Localized external modulator link gain computation
5.4.3. Distributed external modulator link gain computations

5.5. Direct modulation microwave photonic link optomicrowave noise figures
5.5.1. Link noise figure diagram and computation method
5.5.2. Laser noise figure
5.5.3. Optical fiber noise figure
5.5.4. Photodiode noise figure
5.5.5. Direct modulation link noise figure 224
5.5.6. Matching effect at the input of a direct modulation link. . 225
5.5.7. Generalization of a link noise figure computation 226
5.6. External modulation microwave photonic link optomicrowave noise figure ... 227
5.6.1. Equivalent diagram and steps recall 227
5.6.2. Localized external modulator noise figure 227
5.6.3. Distributed external modulator noise figure 228
5.6.4. New evaluation of photodetector noise figure 230
5.6.5. Localized external modulator microwave photonic link noise figure ... 231
5.6.6. Matched input localized external modulator microwave photonic link noise figure 231
5.6.7. Distributed external modulator microwave photonic link noise figure .. 232
5.7. Comparisons of different link noise figures 232
5.7.1. Evaluation of direct modulation link noise figure 232
5.7.2. Evaluation of localized external modulator link noise figure ... 234
5.7.3. Evaluation of matched input localized external modulator link noise figure .. 234
5.7.4. Evaluation of distributed external modulator link noise figures .. 236
5.7.5. Output noise power ... 237
5.7.6. Some effectively measured noise figure values 239
5.8. Microwave photonic link nonlinearity: distortion phenomena ... 241
5.8.1. Single microwave signal nonlinearity 241
5.8.2. Several input microwave signals nonlinearity 242
5.8.3. Wideband input signal nonlinearity 244
5.8.4. Nonlinearity combination of microwave photonic link components .. 245
5.9. Microwave photonic link interference-free dynamic range 246
5.9.1. Single input signal microwave photonic link interference-free dynamic range ... 246
5.9.2. Several-input signal microwave photonic link interference-free dynamic range 247
5.9.3. Some effectively measured interference-free dynamic range values .. 249
5.10. Appendix. .. 250
5.10.1. Relation between parameters S, Z, Y, and ABCD 250
5.10.2. Equation choice for the computation of microwave photonic link optomicrowave noise figure 251
5.10.3. Calculation of a two-input signal microwave photonic link interference-free dynamic range. 261

Chapter 6 Complement to Microwave Photonic Link Performances 267

6.1. Microwave signal attenuation during double sideband modulation 267
 6.1.1. Double sideband modulation recall 267
 6.1.2. Recall of single-mode optical fiber propagation characteristics 268
 6.1.3. Optical fiber double sideband modulated signal propagation 270
 6.1.4. Double sideband-modulated signal photodetection at the optical fiber output 271

6.2. Modulator structures for optical carrier or high and low sideband removal 273
 6.2.1. Optical modulation recall 273
 6.2.2. Single sideband or carrier suppression optical modulators 274
 6.2.3. Carrier suppression and single sideband optical modulator 277

6.3. Degradation of a microwave signal spectral purity by an optical link 280
 6.3.1. Phenomenon description 280
 6.3.2. Some definitions concerning the noise around a microwave carrier 281
 6.3.3. Amplitude and phase noise in an optical link 282
 6.3.4. Phase noise computation of a microwave signal transmitted by an optical link 284
 6.3.5. Amplitude noise computation of a microwave signal transmitted by an optical link 286

Chapter 7 Electronic Amplifiers in Microwave Photonic Links 289

7.1. Electronic amplifiers in optical links 289
7.2. Amplifiers in the optical link emitter 289
 7.2.1. Different roles of electronic amplifiers on optical emitter 289
 7.2.2. Emission: modulator or laser input amplifiers 290
7.3. Receiver: amplifiers at the photodetector output 293
 7.3.1. General points 293
 7.3.2. Transimpedance amplifiers 294
 7.3.3. Distributed amplifiers 296
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.4</td>
<td>Combination of transimpedance and distributed amplifiers</td>
<td>298</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Narrowband amplifiers</td>
<td>298</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Preamplifier after a phototransistor</td>
<td>299</td>
</tr>
<tr>
<td>7.3.7</td>
<td>Other circuits after a phototransistor</td>
<td>299</td>
</tr>
<tr>
<td>7.4</td>
<td>Appendix: analog and microwave amplifiers</td>
<td>300</td>
</tr>
<tr>
<td>7.4.1</td>
<td>General points</td>
<td>300</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Analog amplifiers</td>
<td>300</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Microwave amplifier: expression of transistor reflection coefficients</td>
<td>304</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Microwave amplifiers: gain expressions</td>
<td>306</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Unilateralized transistor model: two-port network matching computation</td>
<td>307</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Non-unilateralized transistor: general case of a transistor with $S_{12} \neq 0$</td>
<td>312</td>
</tr>
<tr>
<td>7.4.7</td>
<td>Low noise amplifier</td>
<td>313</td>
</tr>
<tr>
<td>7.4.8</td>
<td>General models of low signal microwave amplifiers</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>Chapter 8 Simulation and Measurement of Microwave Photonic Links</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>State of the art and context</td>
<td>321</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Objective</td>
<td>321</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Choice of simulation software</td>
<td>321</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Different ADS simulation techniques</td>
<td>322</td>
</tr>
<tr>
<td>8.2</td>
<td>Microwave optical link models</td>
<td>324</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Two-port network approach</td>
<td>324</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Electro-optic transducer: the laser</td>
<td>325</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Transmission guiding: the optical fiber</td>
<td>329</td>
</tr>
<tr>
<td>8.2.4</td>
<td>The optoelectric transducer: the photodiode</td>
<td>334</td>
</tr>
<tr>
<td>8.3</td>
<td>Nonlinearity effects in the link</td>
<td>337</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Nonlinearity sources</td>
<td>337</td>
</tr>
<tr>
<td>8.3.2</td>
<td>1 dB compression point and first-order dynamic of the link</td>
<td>338</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Third-order intermodulation and third-order interference-free dynamic range of the link</td>
<td>339</td>
</tr>
<tr>
<td>8.4</td>
<td>Link noise modeling</td>
<td>340</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Noise in the laser</td>
<td>340</td>
</tr>
<tr>
<td>8.4.2</td>
<td>The optical fiber</td>
<td>342</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Noise in the photodiode</td>
<td>342</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Direct modulation link noise figure</td>
<td>343</td>
</tr>
<tr>
<td>8.4.5</td>
<td>Noise power at the receiver</td>
<td>344</td>
</tr>
</tbody>
</table>
8.5. Other types of modulation of signals transmitted on an optical fiber ... 348
 8.5.1. Ultra-wideband signal modulation .. 348
 8.5.2. External modulation ... 353
 8.5.3. Generation of microwave signal by frequency beating 358
8.6. Conclusion ... 361
8.7. Appendix .. 362
 8.7.1. MB-OOK modulation .. 362
 8.7.2. OFDM modulation ... 363

Bibliography ... 367

Index ... 393