
Chapter 1

Discrete Geometry and Projections

1.1. Introduction

This book is devoted to a discrete Radon transform named the Mojette
transform. The Radon transform specificity is to mix Cartesian and radial
views of the plane. However, it is straightforward to obtain a discrete lattice
from a Cartesian grid while it is impossible from a standard equiangular radial
grid. The only mathematical tool is to use discrete geometry that replaces the
equiangular radial line by discrete lines aligned with a pixel grid. This chapter
presents and investigates these precious tools.

After having examined the structure of the discrete space in section 1.2, we
will focus on topological (section 1.3) and arithmetic (section 1.4) principles
that guide the definition of discrete geometry elements (section 1.5).

1.2. Discrete pavings and discrete grids

First of all, let us define the underlying domain: without loss of generality,
we can define the discrete space as a tiling P of the plane (or the space in
higher dimensions) with non-overlapping enumerable open cells. Hence, a
discrete representation of a continuous function f : R2 → I is a set of valued
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Figure 1.1. Regular grids and regular tilings in two dimensions

cells of P . The function that associates points in R2 with cells of P and defines
a transfer function for the values I is called a digitization process.

Instead of considering the tiling of cells, we may also consider the dual
representation, referred to as the discrete grid. A cell is represented by a single
point (usually its center of gravity) and two points are connected if the two
associated closed cells share an edge or a vertex. Such points are called discrete
points.

In computer vision, regular tiling is preferred for many reasons: easy
storage of cells; easy access to neighboring cells; coordinates can be mapped to
Zn, closer to image capture devices such as charge-coupled devices (CDD). In
two dimensions (2D), three regular tilings exist (Figure 1.1). We can note that
even if cell shapes and cell adjacencies seem to be complex for the triangular
and hexagonal tilings, vertices of their associated discrete grids can be easily
mapped to the Z2 coordinate system.

In three dimensions, a classical regular grid is the cubic grid, composed of
voxels whose centers can be mapped into Z3. In the rest of this chapter, we
only focus on a 2D grid. Note that if some elements presented below can be
easily extended to 3D, the generalization to a higher dimension of geometrical
and topological principles is usually complex.
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1.3. Topological principles and discrete objects

From cell adjacencies we can define elementary objects from which
topological properties can be derived. First of all, let us consider two points
A and B in the square discrete grid. Since A and B can be mapped to Z2

(coordinates associated with A are denoted with subscripts (xA, yA)), A and
B are 4-adjacent if

|xA − xB|+ |yA − yB| = 1 .

In other words, closed cells associated with A and B share an edge and A
therefore has exactly 4 neighbors. We can also define the 8-adjacency as
follows: A and B are 8-adjacent if

max (|xA − xB|, |yA − yB|) = 1 .

Based on this definition, closed cells of A and B share either an edge or a
vertex.

In the hexagonal grid, only one adjacency relationship exists since neigh-
boring closed cells sharing a vertex also share an edge (and conversely). If
we consider the coordinate mapping into Z2 of the hexagonal discrete points
(Figure 1.1), neighbors of a cell (i, j) are{

(i−1, j) , (i, j−1) , (i, j+1) , (i+1, j−1) , (i+1, j) , (i+1, j+1)
}

if j is even, and{
(i−1, j−1) , (i−1, j) , (i−1, j+1) , (i, j−1) , (i, j+1) , (i+1, j)

}
otherwise. Similar embedding of the triangular grid discrete points into Z2 is
possible.

The adjacency relationships presented above are such that the closed cells
of neighboring grid points share either an edge or a vertex. Many other
relationships can be defined if we remove the constraint on the closed cells.
However, since many topological results depend on the adjacency relationship,
many of them may not exist for such general adjacencies.

Considering the relationships presented above, several elementary objects
can be defined. For the sake of simplicity, we consider the k-adjacency as the
abstraction of the possible adjacencies.
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Figure 1.2. Adjacency relationship pairs illustrated with an object-filling process

DEFINITION 1.1.– Let X be a set of discrete points and a k-adjacency
relationship. Then

– a k-path in X between two points A and B (A,B ∈ X) is a sequence
π = (A0, . . . , An) such that A0 = A, An = B, Ai ∈ X and such that Ai is
k-adjacent to Ai−1 (for i = 1, . . . , n);

– X is a k-object (or a k-connected component) if there exists a k-path in
X between each couple A and B of points in X;

– if π is a k-path, π is a k-closed curve if each point in π has exactly two
neighbors in π;

– a k-curve is a k-path π such that each point in π has exactly two
neighbors in π, except for A0 and An (also called curve extremities).

On incorporation of these trivial definitions, many topological problems
arise when we want to consider the border (or boundary) of a discrete object.
Basically, in 2D, we would like the boundary of a discrete object to be a closed
curve as defined above, such that it decomposes the plane into an interior
(bounded) and an exterior (unbounded) domain. This property is called the
Jordan property due to the Jordan Theorem in differential mathematics.

Let us illustrate this property with a simple curve-filling problem (Fig-
ure 1.2). The problem is to fill the interior of the gray discrete curve starting
from the black cell. We first notice that the discrete curve is a 8-closed curve.
If we choose the 4-adjacency in the filling process, we correctly fill the curve.
On the other hand, if we consider the 8-adjacency, the filling process will cover
the complete domain. In some sense, the discrete curve of this second option
does not have the Jordan property.
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In 2D and for the square grid, we need to handle two adjacencies rela-
tionships: one for the object and the other from the background. The Jordan
property can be proven if the considered pair is either (4, 8) or (8, 4).

Finally, note that such problems are even more complex in higher dimen-
sions.

1.4. Arithmetic principles

Whatever the regular grid we consider, vertices can be mapped into Z2 in
2D. As we will see in the following sections, many geometrical properties will
be a consequence of arithmetic principles on integer numbers. In this section,
we give an overview of some elements.

1.4.1. Preliminaries

Let us consider the set of integer numbers Z. Recall that Z equipped with
the operators ′+′ and ′·′ is a commutative ring.

1) (Z,′+′) is an Abelian group (+ is associative, commutative, possesses
an identity element and each integer has an inverse for this operator).

2) (Z,′ ·′) is a monoid (associative, with an identity element).

3) Note that ′·′ distributes over ′+′.

Many arithmetic results will be induced from the fact that ′·′ has no inverse
on Z (in other words, Z is not a field). Despite this, we can define the division
as follows: given a, b ∈ Z, a divides b if there exists c ∈ Z such that a · c = b
(a is also called a divisor of b). With the same condition, we can say that b is
an integer multiple of a.

We next define the congruence relation between integers: given three
integers a, b, c ∈ Z, a is congruent to b modulo c (denoted a ≡ b (mod c))
if a− b is an integer multiple of c (i.e. there exist k ∈ Z such that a− b = kc).
Given an integer number c, the congruence relation modulo c over Z defines a
set of c equivalence classes, denoted Z/cZ. Each equivalence class is denoted
[[a]]c (with a ∈ {0, . . . , c− 1}). In other words, m,n ∈ [[a]]c if m ≡ a (mod c)
and n ≡ a (mod c). Given an integer c, Z/cZ is also a commutative ring.
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Prime numbers will be crucial for many arithmetic properties in discrete
geometry. An integer number a > 1 is prime if its divisors are either 1 or
a itself. Note that if c is prime, each integer a ∈ Z/cZ different from zero
admits an inverse for the ′·′ operator. In other words, Z/cZ becomes a field. In
this book, we do not go further into detail on prime number theory. Interested
readers can refer to [HAR 75].

Given two numbers a and b, the greatest common divisor of a and b denoted
gcd(a, b) is the greatest positive number c such that c divides both a and
b. Since any number divides 0, gcd(0, a) = a. The least common multiple,
lcm(a, b), is the least positive number c such that c is a multiple of both a and
b.

Considering the greatest common divisor, we recall the Bézout identity that
can be stated as follows: given a, b ∈ Z, there exist m,n ∈ Z such that

am+ bn = gcd(a, b) .

From Z, we can derive the set of rational numbers Q = m/n,m, n ∈
Z, n 6= 0} which is a field for the ′+′ and ′·′ operators. A fraction m/n is
called irreducible if gcd(m,n) = 1. Note that if gcd(m,n) = 1, these two
numbers are also said to be relatively prime or coprime.

1.4.2. Lattices

In 2D, let us consider two vectors ~u,~v ∈ Z2 and let O be a discrete point.
The set L of discrete points defined by:

~OP = λ~u+ κ~v (1.1)

with λ, κ ∈ Z, is called a lattice. Considering that if ~u and ~v are not colinear,
such a lattice is a vector subspace over Z2 (2D) whose base vectors are ~u and
~v (Figure 1.3);

{
~u,~v
}

is called the lattice base of L.

The points P generated by equation (1.1) are called the lattice points
generated by ~u and ~v. Several pairs of vectors ~u and ~v may generate the same
set of lattice points. Such lattices are said to be equivalent. For example, the
lattices {O, ~u,~v}, {O,−~u,~v} and {O, ~u, ~u+ ~v} are equivalent.
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O
~u

~v

Figure 1.3. Subset of a lattice {O, ~u = (1, 1)T , ~v = (1, 2)T }

The lattice defined by the unitary vectors ~u = (1, 0)T and ~v = (0, 1)T is
called the fundamental lattice. Let us denote the set of lattice points generated
by the fundamental lattice by Λ, i.e. Λ = Z2.

If we consider ~u = (a, c) and ~v = (b, d), an important result can be stated
as follows.

THEOREM 1.1.– [HAR 75] The lattice points generated by ~u and ~v is
equivalent to the fundamental lattice Λ if and only if det(~u,~v) = ad−bc = ±1.
Such numbers m and n can be determined using the extended Euclidean
algorithm.

In other words, if the area of the parallelogram defined by {O, ~u,~v} is
equal to 1, then the lattice {O,~u,~v} spans Z2. In this case, ~u and ~v are called
unimodular. For example, the lattice illustrated in Figure 1.3 is equivalent to
Λ. Given a vector ~u = (a, b) with a, b ∈ Z such that gcd(a, b) = 1, the Bézout
identity of a and b presented in section 1.4.1 defines the vector ~v = (m,n)
such that ~u and ~v are unimodular.
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1.4.3. Farey series, rational angle and Stern–Brocot tree

First of all, let us consider a classical object in number theory: the Farey
series [HAR 75].

DEFINITION 1.2.– The Farey series Fm of order m is the ascending series of
irreducible fractions between 0 and 1 whose denominators do not exceed m.

For example, the Farey series of order 5 is:

F5 =
{

0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1

}
Such a series has the following properties:

– if h
k and h′

k′ are two successive terms in Fm (with h
k <

h′

k′ ) , then kh′ −
hk′ = 1;

– if h
k , h

′′

k′′ and h′

k′ are three successive terms in Fm (with h
k <

h′′

k′′ <
h′

k′ ),
then h′′

k′′ = h+h′

k+k′ (the fraction h′′

k′′ is called the mediant of hk and h′

k′ ).

Finally, the Farey series Fm+1 can be computed from Fm adding the mediant
with denominator less than or equal to m+ 1 of each two successive fractions
in Fm. For example, F6 is obtained from F5 adding the following bold terms:

F6 =
{

0
1
,
1
6
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
5
6
,
1
1

}

The Stern–Brocot tree is a binary tree starting with 0
1 and 1

1 and iteratively
inserting the mediant between two successive terms h

k and h′

k′ (Figure 1.4).
Another definition can be stated as follows: given a node h

k and its father h′

k′

in the tree (without loss of generality h′

k′ <
h
k ), then h

k is the mediant between
its father (h

′

k′ ) and its first ancestor greater than h
k . In other words, the Stern–

Brocot tree can be interpreted as a structure over Farey series.

1.4.4. Geometrical interpretations of arithmetic results

Many links exist between irreducible fractions and lattices. Most impor-
tantly, two consecutive fractions h

k and h′

k′ are such that kh′ − hk′ = 1. Then
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Figure 1.4. Stern–Brocot tree of F8 fractions

according to Theorem 1.1, the lattice generated by {O,~u = (h, k)T , ~v =
(h′, k′)} is equivalent to Λ. In other words, vectors ~u and ~v are unimodular.

Two points p and q in a lattice are said to be mutually visible if the segment
[pq] that joins them contains no other point from the lattice. In other words,
the line segment [pq] cannot be divided. Since each fraction h

k in a Farey series
is irreducible, it corresponds to a point (k, h) in Z2 mutually visible with the
origin, simply called a visible point. The Farey series enumerates all visible
points in a portion of the discrete plane Z2 (this area is defined by m ≥ k ≥
h ≥ 0). By adding symmetric points, the Farey series Fm gives the whole
set of visible points in a (m + 1) × (m + 1) square centered in the origin
(Figure 1.5).

1.5. Discrete geometry elements

1.5.1. Diophantine equations and discrete lines

In order to define a complete digital geometrical paradigm we need points
and elementary geometrical objects such as straight lines and circles. In this
section, we focus on straight lines and illustrate the impact of the arithmetic
results presented above on this object.
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p

q

(a) (b) (c)

Figure 1.5. Visible and non-visible points and Farey series: (a) points p and q are not mutually
visible (the line segment [pq] can be divided into three segments using lattice points between p
and q); (b) graphical representation of the Farey series F6; and (c) the Farey series F6 and

symmetric points produce all points visible from the origin in a centered 13× 13 square

Let us first consider the equation ax+by = cwhich defines a straight line in
the continuous case. If we consider a, b, c ∈ Z and if we are only interested in
discrete solutions, then {(x, y) ∈ Z2, ax+by = c} defines a linear diophantine
equation.

First of all, if c is not divisible by gcd(a, b), no solution exists. Otherwise,
the equation is equal to {(x, y) ∈ Z2, a′x + b′y = 1} with a′ = a

gcd(a,b) and

b′ = b
gcd(a,b) . Using the extended Euclidean algorithm, we can compute a first

solution denoted M(m,n).

We can prove that the other solutions are determined by (m− kb′, n+ ka′)
with k ∈ Z. In other words, solutions are given by the one-dimensional (1D)
lattice defined by ~v = (−b′, a′) shifted on M .

Unfortunately, this 1D lattice is not a good candidate for a discrete
definition of a straight line. Basically, we would like the discrete straight line
(DSL) to be a 4- or an 8-connected arc on the square grid. In the following, we
consider Reveilles’s analytical definition.
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(a) (b) (c) (d) (e)

Figure 1.6. DSL (3, 7, 0, ω) with variable thickness: (a) ω = 5; (b) ω = max(|a|, |b|) = 7;
(c) ω = 8; (d) ω = |a|+ |b| = 10; and (e) ω = 16

DEFINITION 1.3.– [RÉV 91] A discrete straight line of parameters (a, b, µ, ω)
is the set of grid points satisfying:

µ ≤ ax− by < µ+ ω

with a, b, µ, ω ∈ Z and gcd(a, b) = 1.

In this definition, b/a is the slope of the DSL, µ its intercept and ω its
thickness. To control the topology of the discrete set, we have the following
result [RÉV 91]:

THEOREM 1.2.– Given a DSL D = (a, b, µ, ω), we have:

– if ω < max(|a|, |b|), D is disconnected;

– if ω = max(|a|, |b|), D is an 8-arc;

– if ω = |a|+ |b|, D is a 4-arc;

– if max(|a|, |b|) < ω < |a| + |b|, D is an 8-object, but too thin to be a
4-object;

– if ω > |a|+ |b|, D is a 4-object, referred to as a thick DSL.

An illustration of this theorem is given in Figure 1.6. DSL grid points
defined by Definition 1.3 can also be obtained as the union of ω 1D lattices:

ax− by = µ

ax− by = µ+ 1

. . .

ax− by = µ+ ω − 1

Hence, many arithmetic properties can be associated with DSL (links
with digitization schemes, periodicity, etc.). For interested readers, [KLE 04]
provides a good bibliography.
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(a b)

(−b a)

O

(x, y)

(x′, y′)

Figure 1.7. Orthogonal projection in R2

1.5.2. Discrete projection along a rational angle

In the remainder of the book we will mainly consider thin discrete lines
with ω = 1, used as discrete projection lines.

First consider the orthogonal projection in R2 of the point P = (xP , yP )
into P ′ = (x′, y′) on the line ax− by = 0 as illustrated in Figure 1.7.

We have{
( x′ y′ ) = t( a b )−−→
OP ′ · −−→P ′P = ( x′ y′ ) · ( xP − x′ yP − y′ ) = 0,

taxP − t2a2 + tbxP − t2b2 = 0

and finally

( x′ y′ ) =
axP + byP
a2 + b2

( a b ).

Any point P ′ = t(a, b), t ∈ R on the projected line of direction
vector ( a b ) corresponds to an infinite set (called the preimage of P ′) of
antecedent points whose projection gives P ′. The preimage of P ′ is a thin
line (a 1D lattice) whose direction vector is colinear to ( −b a ) defined by:
ax+ by − t/(a2 + b2) = 0 or, equivalently, ax+ by − axP − bxP = 0.
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Figure 1.8. Orthogonal projection in Z2 on the discrete line −bx+ ay = 0

If we restrict the domain (the set of source points) to Z2 and the direction
vector ( a b ) of the projected line to Z2 \ (0 0), then not all points of R2 in
the projected line ax− by = 0 have antecedents in Z2 (Figure 1.8). According
to the Bézout identity, there exists (x, y) ∈ Z2 such that ax + by = t if and
only if t = k gcd(a, b), k ∈ Z. Any projected point (x, y) must simultaneously
verify the two following equations:{

−bx+ ay = 0
ax+ by − k gcd(a, b) = 0.

We then have ( x y ) = k gcd(a, b)( a b )/(a2 + b2), k ∈ Z and the
codomain (the set of projected points) is a 1D discrete lattice whose base vector
is gcd(a,b)(a b)

a2+b2
.
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p

q

Figure 1.9. (a) Convexity in continuous domain and illustration of discrete definitions: (b)
MP-convexity; (c) V-convexity; and (d) S-convexity

In the following, we will consider discrete angles in Z2 defined by a couple
of coprime integers (p, q) ∈ Z2 with gcd(q, p) = 1. We saw in section 1.4.3
how the Farey series can be used to enumerate these discrete angles of slope
q/p = 0 to 1. For the discrete angle (p, q), we use the quantity b = −qk + pl
as an index to the projection of the discrete point (k, l) in the 1D lattice whose
base vector is (−q p)

p2+q2
.

1.5.3. Convexity

In the continuous domain, an object X is convex if, for any two points
p, q ∈ X , the segment [pq] lies in X (see Figure 1.9a). In discrete geometry,
several definitions have been proposed to generalize this definition to discrete
domains (Figure 1.9):

1) MP-convexity [MIN 88]: a discrete object X is digitally convex if, for
any two point A,B ∈ X , the discrete point satisfying [AB] ∩ Z2 is also in X .

2) V-convexity [VOS 93]: X is digitally convex if, for any three points
A,B,C ∈ X , the discrete points in the triangle (A,B,C) lie in X .

3) S-convexity [SKL 72]: X is digitally convex if there exists a continuous
convex object Ω such that X = Ω ∩ Z2.

If definitions (1) and (2) correspond to discrete versions of the continuous
convexity definition, definition (3) defines the digital convexity as the result
of the convex continuous object digitization. Note that this schema is usually
used to define discrete geometric objects as the digitization of their continuous
counterparts.

Concerning the digital convexity, even if some other definitions exist
[RON 89], equivalences can be proved [KIM 80, KIM 82, ECK 01].
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Figure 1.10. (a, b) Lattice polygon illustrating Pick’s theorem

1.5.4. Pick’s Theorem and related counting problems

Pick’s Theorem provides a link between the area of a lattice polygon and
the number of lattice points it contains. A simple polygon or Jordan polygon
is a polygon whose sides do not intersect. If its vertices are lattice points, it is
called a polytgon lattice. Let P be a lattice polygon containing I interior points
and B border points. Pick’s Theorem states that its area A is given by:

A = I +
B

2
− 1. (1.2)

The area of the lattice polygon represented in Figure 1.10a is 48.5, the number
of its interior points is 42, the number of its border points is 15 and we have
48.5 = 42 + 15/2 − 1. In the same manner, the area of the polygon in
Figure 1.10b is 45.5 = 39 + 15 + 2− 1.

1.5.5. Binary mathematical morphology and two-pixel structuring elements

Mathematical Morphology (MM), created by Georges Matheron and Jean
Serra during the 1960s, is a theory dedicated to the processing of geomet-
rical structures. It was originally developed for binary images, mainly for
granulometry analysis, and was later extended to grayscale images and many
spatial structures. For our purposes, we will describe the two dual operators
erosion and dilation in the context of binary images. A structuring element
that represents a shape is used as a probe in a binary image, to check were this
shape can fit in the image. For the erosion operator, each time the translated
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Figure 1.11. (a) The 2PSE {O, (2, 1)}; (b) a binary image; (c) the image and its translation;
(d) eroded image and (e) dilated image

structuring element fits in the image, a pixel is set in the result image

A	 B̌ = {p s.t. (B)p ⊆ A}, (1.3)

where A is the image, B is the structuring element and (B)p is the structuring
element translated by the point p.

For the dilation operator, each time the translated structuring element
intersects with the image, a pixel is set in the result image

A⊕ B̌ = (Ac 	 B̌)c = {p| (B)p ∩A 6= ∅}. (1.4)

In the context of the Mojette transform, a specific two-pixel structuring
element (2PSE) {O, (k, l)} is defined to represent the discrete angle (k, l)
(Figure 1.11). The erosion with a 2PSE is the simple intersection of the image
with its translation:

A	 B̌ = A ∩ (A)−p , where B = {O, p}. (1.5)

Compare the dilation with a 2PSE in the union of an image with its translation:

A⊕ B̌ = A ∪ (A)−p , where B = {O, p}. (1.6)




