Table of Contents

Introduction ... xi
Arnaud BANOS and Thomas THÉVENIN.

PART 1. CHARACTERIZATION OF TRANSPORT SUPPLY 1

Chapter 1. Modeling Transport Systems
on an Intra-Urban Scale 3
Thomas THÉVENIN

1.1. Introduction ... 3
1.2. GIS-transport experiments 4
 1.2.1. The three stages of evolution of GIS-T 4
 1.2.2. Between time and operational dimensions 6
 1.2.3. Evolutionary perspectives of GIS-T 8
1.3. Towards an urban GIS-T 9
 1.3.1. Norms for facilitating information transfer 9
 1.3.2. Data model for urban GIS-T 11
 1.3.3. From integrating the demand... 13
 1.3.4. ...to structuring transport supply 15
1.4. Towards an analysis of accessibility 17
 1.4.1. Potential accessibility measurement 18
 1.4.2. Towards a measurement of “urban potential” .. 23
1.5. Conclusion .. 26
1.6. Bibliography 27
Chapter 2. Determining Urban Public Transport Supply

Robert CHAPLEAU

2.1. Introduction .. 31
2.2. Considering time in journey planning 35
2.3. Geometry of a collective urban transport network:
 expressing interconnectivity 36
 2.3.1. Linear routes: ordered sequences of stops 39
 2.3.2. Coding connection nodes 41
2.4. Calculating resources according to transport
 network coding 42
2.5. Visualizing the transport network from different
 perspectives ... 43
 2.5.1. Load profile for a subway line 44
 2.5.2. Load profiles for transport lines 45
 2.5.3. Measurement of accessibility to the
 public transport network 47
 2.5.4. The importance of public transport 48
 2.5.5. Detailed measurement of public transport:
 surface area of the transport demand for the line 48
2.6. Conclusion: GIS as an analysis
 and intervention platform 50
2.7. Bibliography 51

Chapter 3. Defining Intermodal Accessibility

Alexis CONESA and Alain L'HOSTIS

3.1. Introduction .. 53
3.2. Accessibility 54
 3.2.1. A definition of accessibility 54
 3.2.2. Measuring accessibility 56
 3.2.3. “Best time” limits 58
 3.2.4. Schedule accessibility 59
3.3. Intermodality and multimodality 60
3.4. Modeling the transport system: networks
 and graphs .. 61
3.5. Example on an urban scale: access
to the Lille campus 63
 3.5.1. Villeneuve d’Ascq campus: access via central rail
 stations 65
 3.5.2. Medicine campus: making use of Halte CHR 67
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.3. Valorizing intermodality to access the Lille campuses</td>
<td>70</td>
</tr>
<tr>
<td>3.6. Conclusion</td>
<td>75</td>
</tr>
<tr>
<td>3.7. Bibliography</td>
<td>77</td>
</tr>
<tr>
<td>Chapter 4. Characterizing Form and Functioning of Transportation Networks</td>
<td>83</td>
</tr>
<tr>
<td>Cyrille GENRE-GRANDPIERRE</td>
<td></td>
</tr>
<tr>
<td>4.1. Introduction</td>
<td>83</td>
</tr>
<tr>
<td>4.2. Precautions and limitations in describing form and functioning of transportation networks</td>
<td>85</td>
</tr>
<tr>
<td>4.2.1. Describing network shapes</td>
<td>85</td>
</tr>
<tr>
<td>4.2.2. The spatial coverage of the networks</td>
<td>87</td>
</tr>
<tr>
<td>4.2.3. Assessing accessibility provided by transport systems: a few precautions</td>
<td>93</td>
</tr>
<tr>
<td>4.2.4. Routing flows</td>
<td>99</td>
</tr>
<tr>
<td>4.3. Examples of induced effects related to the form and functioning of transport networks</td>
<td>104</td>
</tr>
<tr>
<td>4.3.1. Network shapes and pedestrian mobility</td>
<td>104</td>
</tr>
<tr>
<td>4.3.2. Car dependency as an induced effect of the type of accessibility provided by current networks</td>
<td>108</td>
</tr>
<tr>
<td>4.4. Conclusion</td>
<td>111</td>
</tr>
<tr>
<td>4.5. Bibliography</td>
<td>111</td>
</tr>
<tr>
<td>PART 2. ESTIMATING TRANSPORT DEMAND</td>
<td>115</td>
</tr>
<tr>
<td>Chapter 5. Estimating Transport Demand</td>
<td>117</td>
</tr>
<tr>
<td>Patrick BONNEL</td>
<td></td>
</tr>
<tr>
<td>5.1. Introduction</td>
<td>117</td>
</tr>
<tr>
<td>5.2. Modeling history</td>
<td>118</td>
</tr>
<tr>
<td>5.3. Methodological framework</td>
<td>122</td>
</tr>
<tr>
<td>5.3.1. Forecasting procedure</td>
<td>122</td>
</tr>
<tr>
<td>5.3.2. The model: the result of a double simplification process</td>
<td>126</td>
</tr>
<tr>
<td>5.3.3. Operationality and problems regarding the model</td>
<td>130</td>
</tr>
<tr>
<td>5.4. Constructing geographical information: from the zonal system to the network structure</td>
<td>134</td>
</tr>
<tr>
<td>5.5. Constructing origin/destination matrices</td>
<td>140</td>
</tr>
</tbody>
</table>
Chapter 6. Visualizing Daily Mobility: Towards Other Modes of Representation

Olivier Klein

6.1. Introduction ... 167
6.2. Essential preconditions 168
6.2.1. Indisputable data to collect 170
6.2.2. Towards an adapted data structuring 174
6.3. Classic limited cartographical approaches 182
6.3.1. Limited classic semiotics 182
6.3.2. Relatively old innovations 187
6.4. An answer by geovisualization 195
6.4.1. The paradigm of scientific visualization 197
6.4.2. Adapting cartography to multiple potentialities . 200
6.5. Conclusion ... 214
6.6. Bibliography ... 214

Chapter 7. Guiding a Tram-Train Installation: a Necessary Multi-Criteria Approach

Olivier Bouhet

7.1. Introduction ... 221
7.2. The tram-train .. 224
7.2.1. Tram-train philosophy 224
7.2.2. Tram-train operation 226
7.3. The tram-train project in the urban region of Grenoble .. 228
7.3.1. The agglomeration and Grésivaudan sectors of the urban region of Grenoble 229
7.3.2. Traffic problems 230
7.3.3. The tram-train solution 233
7.4. A two tool method: GIS and MCA 233
7.4.1. Tools .. 234
7.4.2. AHP method .. 236
Table of Contents

7.4.3. Application of the AHP method. 238
7.5. Result analysis 243
 7.5.1. The second simulation. 244
 7.5.2. Possible zones without MCA 246
 7.5.3. Line route 247
 7.5.4. Transport stop locations 251
7.6. Conclusion 256
7.7. Bibliography 258

List of Authors 261

Index 263