Table of Contents

Foreword. The Taste for Measuring and Modeling xi
Nicole MATHIEU

Preface ... xxiii

Acknowledgements xxv

Chapter 1. The Place of Both the Model and Modeling in HSS 1
Patrice LANGLOIS and Daniel REGUER
1.1. Models and modeling: definitions .. 2
1.2. The mathematical concept of a model 5
1.2.1. The semantic conception .. 5
1.2.2. The empirical concept .. 6
1.2.3. Links between the mathematical model and its object 7
1.3. Is there a specificity of HSS? ... 7
1.4. Modeling: explain to understand? 11
1.5. Bibliography .. 13

Chapter 2. From Classic Models to Incremental Models 15
Yves GUERMOND
2.1. The geographic “object” .. 16
2.2. Lessons from the “classic models” 16
2.3. Introduction to dynamics and auto-organization 22
2.4. From auto-organization to complexity 26
2.5. Spatial agents .. 30
2.6. Incremental modeling ... 32
2.7. Bibliography .. 35
Chapter 3. The Formalization of Knowledge in a Reality Simplifying System

Françoise LUCCHINI

3.1. Formalizing a complex cultural system using a series of perspectives
 3.1.1. An initial perspective on culture and the city: the French example
 3.1.2. A simplification of the cultural system in place in France that is transposable to other countries.
 3.1.3. Culture: possible measures
 3.1.4. Culture in a centralized state: a French diagnostic turned towards the elaboration of a transposable investigation protocol
 3.1.5. The necessary re-formulation of knowledge to overcome the successive and qualitative steps of advancement

3.2. Differentiation of the system of cities by culture: contribution of the spatial analysis for testing the “global cultural model”
 3.2.1. A methodological investigation to define the cultural potential of British and French cities and their competitive capacity
 3.2.2. A comparative intra-urban study of two cities: similar disparities at the heart of the urban areas of Rouen and Brighton

3.3. Alternative formalizations
 3.3.1. Measuring urban cultural potential
 3.3.2. A way to better define the global operation of the cultural system

3.4. Conclusion

3.5. Bibliography

Chapter 4. Modeling and Territorial Forecasting: Issues at Stake in the Modeling of Réunion’s Spatial System

Gilles LAJOIE

4.1. Introduction
4.2. A few major theoretical breakthroughs for modeling spatial complexity
4.3. Modeling and territorial forecasting of the socio-spatial system of Réunion
 4.3.1. Spatial complexity and social urgency in Réunion or future deviations
 4.3.2. The trend scenarios or the probable future
 4.3.3. Catastrophic scenarios/unacceptable futures
 4.3.4. Reformist scenarios/desirable futures

4.4. Modeling of Réunion’s socio-spatial system
 4.4.1. Graphic modeling of Réunion’s complexity

4.5. Towards a modeling of the dynamics of Réunion’s system

4.6. Conclusion

4.7. Bibliography
Table of Contents

Chapter 5. One Model May Conceal Another: Models of Health Geographies

Alain VAGUET

5.1. Modeling in order to surpass descriptions? .. 102
5.2. Mode of the models and models in vogue .. 104
 5.2.1. Modeling of healthcare provision .. 106
 5.2.2. The models put to comprehension and action testing 109
5.3. Conclusion .. 111
5.4. Bibliography .. 111

Chapter 6. Operational Models in HMO

Jean-François MARY and Jean-Manuel TOUSSAINT

6.1. Buffer and barycenter to determine the location of cardiac defibrillation ... 114
6.2. Thiessen’s accessibility formula ... 117
6.3. Accessibility: the direct added-value of the GIS 121
6.4. A regional database of road accessibility devoted to emergency 123
6.5. The reallocation projects and their consequences 126
6.6. Relocation of a medical clinic: simulation of a new accessibility ... 131
6.7. Bibliography .. 134

Chapter 7. Modeling Spatial Logics of Individual Behaviors: From Methodological Environmentalism to the Individual Resident Strategist

Michel BUSSI

7.1. Reconsidering spatial determinism: modeling versus local development .. 138
7.2. Ecological methodology ... 142
 7.2.1. Individualism and ecology ... 142
 7.2.2. What place does geography have in the systemic approach to societal phenomena? ... 144
 7.2.3. The collective dimension of individual facts: the intra-urban example .. 146
7.3. Towards a post-industrialist behavior .. 149
 7.3.1. Self-organization and segregation .. 149
 7.3.2. Space/individualism: two interpretations 151
7.4. From neighborhood effect to the theory of the citizen-resident-strategist ... 152
7.5. Bibliography .. 157

Chapter 8. Temporalities and Modeling of Regional Dynamics: The Case of the European Union

Bernard ELISSALDE

8.1. Integrating time and temporalities into spatial models 162
 8.1.1. A renewed approach to time .. 162
 8.1.2. Temporalities and complex systems 164
8.1.3. A necessary introduction of polytemporality into modeling 166
8.2. Introduction of complexity theory in the interpretation of regional
inequalities in Europe .. 168
 8.2.1. The European Union: regional convergences or divergences? . . 172
 8.2.2. Which interpretive models? 173
 8.2.3. The evolution of regional inequalities in Europe 175
 8.2.4. Evaluating the issue of possible catch-up and convergence 180
 8.2.5. Hypothesis of the neighborhood effect 184
8.3. Conclusion .. 186
8.4. Bibliography ... 188

Chapter 9. Modeling the Watershed as a Complex Spatial System:
A Review .. 191
Daniel DELAHAYE
 9.1. Shape indices for measuring various forms of a watershed. 192
 9.2. Organization of the networks 193
 9.2.1. Genesis of hydrographical networks 193
 9.2.2. Researching network laws 194
 9.2.3. Towards a law concerning reach distribution 197
 9.3. Synthesis concerning the shape and organization indices 200
 9.4. From morphometry to complex systems 202
 9.4.1. Methodological framework 202
 9.4.2. Results from the simulation 209
 9.4.3. Applications and the contributions of the cellular automaton ... 210
 9.5. Conclusion .. 213
 9.6. Bibliography ... 213

Chapter 10. Understanding to Measure...or Measuring to Understand?
HBDS: Towards a Conceptual Approach for the Geographic Modeling
of the Real World .. 217
Thierry SAINT-GERAND
 10.1. A forgotten face of the geographic approach 217
 10.1.1. The causality in question 218
 10.1.2. The concept in the light of the technique: “collisions” and
 misadventures of a couple in disharmony 219
 10.1.3. The conceptual modeling of the geographic phenomena: a
 necessary prerequisite, why and how 221
 10.1.4. The GIS: a special spatial information system 223
 10.1.5. The geographic object: logic makes the entity 225
 10.2. Formalizing a spatial reasoning in databases 226
 10.2.1. Operational structures for the geographic modeling of the
 real world .. 226
 10.2.2. Preliminary research into the data structuring methods: a
 historical overview .. 227
10.2.3. A methodology adapted to research: hypergraphic modeling by Bouillé 231
10.2.4. Spatial concepts and planar law for a hyper(geo)graphic reasoning 235
10.3. Example of thematic application: the industrial risks at Notre-Dame-de-Gravenchon (lower Seine valley) 246
 10.3.1. Identifying the specific and central concepts 248
 10.3.2. To identify the peripheral concepts 248
10.3.3. Formalizing the spatial synthesis of danger 250
10.4. Back to the sources.. 252
10.5. Bibliography ... 253

Chapter 11. Complexity and Spatial Systems 255
Patrice LANGLOIS

 11.1 The paradigm of complexity .. 255
 11.2. The systemic paradigm: from the combinatorial to emergence 260
 11.2.1. The systemic triangle .. 260
 11.2.2. The whole is greater than the sum of its parts 262
 11.2.3. The whole is less than the sum of its parts 262
 11.2.4. The whole as a structure of its components 263
 11.2.5. The whole as an emergence of its parts 266
 11.3. Moving towards a more formalized definition of the notion of a spatial system .. 266
 11.3.1. First definition of a system, 266
 11.3.2. Geographic objects ... 267
 11.3.3. Interactions ... 270
 11.3.4. The functioning of a system 272
 11.3.5. A formal definition of a spatial system 274
 11.4. Bibliography ... 275

Chapter 12. Cellular Automata for Modeling Spatial Systems 277
Patrice LANGLOIS

 12.1. The concept of the automaton and its modeling 277
 12.2. A little bit of history ... 278
 12.3. The concept of the finite state automaton 279
 12.3.1. Mealy and Moore automata 280
 12.3.2. An example of Moore’s automaton 281
 12.3.3. Moore’s automaton simplified 282
 12.3.4. Logic gate AND: an example 282
 12.3.5. Threshold automata, window automata 283
 12.3.6. The automaton and the stochastic process 284
 12.4. The concept of the cellular automaton 285
 12.4.1. Level of formalization 285
 12.4.2. Presentation of the concept 286
 12.4.3. The formal definition of a cellular automaton 287
Chapter 13. Multi-Agent Systems for Simulation in Geography:
Moving Towards an Artificial Geography 309
Eric DAUDE

13.1. Introduction .. 309
13.2. From global to local description of structures and spatial dynamics . . . 310
 13.2.1. Spatial analysis in practice 310
 13.2.2. Artificial geography in practice 311
13.3. Multi-agent systems .. 313
 13.3.1. Environment .. 314
 13.3.2. Agents in the environment 315
 13.3.3. Method of communication between agents 316
 13.3.4. Multi-agent systems and geography 317
 13.3.5. A typology of MAS models 318
13.4. Artificial geography: simulations of structures and spatial dynamics . . . 319
 13.4.1. Emergence and evolution of spatial structures 320
 13.4.2. Exploration of dynamics in space 324
 13.4.3. Practices, representations and organization of space 326
13.5. Conclusion .. 329
13.6. Bibliography ... 329

Conclusion .. 335
Yves GUERMOND

List of Authors .. 337

Index ... 339