Preface xi

Part 1. Symbolic Data 1

1.1. Introduction 4

1.2. Introduction to Symbolic Data Analysis 6

1.2.1. What are complex data? 6

1.2.2. What are “classes” and “class of complex data”? 7

1.2.3. Which kind of class variability? 7

1.2.4. What are “symbolic variables” and “symbolic data tables”? 7

1.2.5. Symbolic Data Analysis (SDA) 9

1.3. Symbolic data tables from Dynamic Clustering Method and EM 10

1.3.1. The “dynamical clustering method” (DCM) 10

1.3.2. Examples of DCM applications 10

1.3.3. Clustering methods by mixture decomposition 12

1.3.4. Symbolic data tables from clustering 13

1.3.5. A general way to compare results of clustering methods by the “explanatory power” of their associated symbolic data table 15

1.3.6. Quality criteria of classes and variables based on the cells of the symbolic data table containing intervals or inferred distributions 15

1.4. Criteria for ranking individuals, classes and their bar chart descriptive symbolic variables 16

1.4.1. A theoretical framework for SDA 16

1.4.2. Characterization of a category and a class by a measure of discordance 18
7.5. Experiments .. 156
 7.5.1. Performance evaluation 156
 7.5.2. Datasets ... 157
 7.5.3. Analysis of one-mode projected networks 158
 7.5.4. Models evaluated 160
 7.5.5. Results ... 160
7.6. Perspectives ... 163
7.7. References .. 163

Chapter 8. Attributed Networks Partitioning Based on Modularity Optimization .. 169
David COMBE, Christine LARGERON, Baptiste JEUDY,
Françoise FOGELMAN-SOULIÉ and Jing WANG
 8.1. Introduction .. 169
 8.2. Related work ... 171
 8.3. Inertia based modularity 172
 8.4. I-Louvain .. 174
 8.5. Incremental computation of the modularity gain 176
 8.6. Evaluation of I-Louvain method 179
 8.6.1. Performance of I-Louvain on artificial datasets .. 179
 8.6.2. Run-time of I-Louvain 180
 8.7. Conclusion ... 181
 8.8. References ... 182

Part 4. Clustering ... 187

Chapter 9. A Novel Clustering Method with Automatic Weighting of Tables and Variables 189
Rodrigo C. DE ARAÚJO, Francisco DE ASSIS TENORIO DE CARVALHO and Yves LECHEVALLIER
 9.1. Introduction .. 189
 9.2. Related Work ... 190
 9.3. Definitions, notations and objective 191
 9.3.1. Choice of distances 192
 9.3.2. Criterion W measures the homogeneity of the partition P on the
 set of tables .. 193
 9.3.3. Optimization of the criterion W 195
 9.4. Hard clustering with automated weighting of tables and variables 196
 9.4.1. Clustering algorithms MND–W and MND–WT 196
 9.5. Applications: UCI data sets 201
 9.5.1. Application I: Iris plant 201
 9.5.2. Application II: multi-features dataset 204