
Chapter 2  

Discrete Dislocation Dynamics:  
Principles and Recent Applications 

2.1. Discrete Dislocation Dynamics as a link in multiscale modeling 

In crystalline materials, a dislocation is a line defect which represents permanent 
deviations of atoms from their original crystallographic periodicity. Dislocation 
motion in the slip system of the crystal gives rise to macroscopic plastic 
deformation. A dislocation is thus a microscopic carrier of crystal plasticity. 

Modeling the plasticity of crystalline materials involves understanding the nature 
of dislocations, which is defined at the atomistic scale and also evaluating the 
deformation behaviors at the macroscopic scale. Many models have been developed 
to understand the plasticity of metals. Since the features of plasticity vary a lot in 
size and time, the models also vary widely in length and time scales as depicted in 
Figure 2.1. Out of a range of models, most attention is given in this chapter to 
Molecular Dynamics (MD), Dislocation Dynamics (DD) and Continuum Mechanics 
(CM) with a special emphasis on DD simulations. 

Atoms are the basic constituent elements of MD simulations. Atoms interact 
with each other through interatomic potentials. The temporal trajectory of a set of 
atoms under an external loading is simulated by minimizing the total potential 
energy of the system. The deviations of the position of the atoms from the lattice 
sites implicitly represent the dislocations. The atomistic scale topology of a 
dislocation line can thus be investigated by MD. MD simulations are employed 
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mostly in studying physical properties of a single or a few dislocation lines due to 
the constraints of the simulation size (<(200 nm)3). 

In DD methods, dislocation lines are represented explicitly. Each dislocation line 
is treated as an elastic inclusion embedded in an elastic medium. The collective 
evolution of a large number of interacting dislocations under an external loading is 
simulated using elastic properties of the crystal. Core properties of dislocations such 
as line mobility, junction strength etc., are input parameters of DD simulations that 
can be derived from MD simulations. DD simulations give access to the dislocation 
patterning but also to the mechanical response of the simulated volume (<(50µm)3).  

 

Figure 2.1. Typical volume size and physical time covered  
by three models devoted to crystal plasticity 

At a higher scale, CM treats the behavior of a continuum medium using a set of 
equations and boundary conditions. There is a wide range of numerical techniques 
which can solve the equations. Finite difference and finite element methods are two 
broad subsets of such techniques. In these methods, a continuum domain of interest 
is subdivided into discrete cells or elements, in which the values of certain physical 
quantities are determined by solving a system of equations. Ideally, CM should use 
a set of constitutive equations that accurately account for the physics at the origin of 
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the plasticity which, in the case of crystalline materials is closely related to the 
dislocation dynamics. Thus, DD simulations can obviously feed CM models by 
calculating the constitutive equations. In CM, the maximum size of the simulated 
volume is not limited but instead imposed by the space resolution associated with 
the problem treated. However, each simulation cell must be big enough to be 
representative of a continuum medium in agreement with the constitutive equations. 

As introduced briefly above, MD, DD and CM have their own characteristic 
length and time scale. Figure 2.1 shows such ranges of length and time scales for 
each method. As the performance of each numerical method is improved, the 
volume and the physical time which can be simulated increase (top and right domain 
limits of each method in Figure 2.1). Recently the length and time scales of the three 
methods begin to overlap. This gives a great impetus to exchange information 
between the different models in order to build up a unified description of crystal 
plasticity, which would ideally be able to predict the behavior of a material from the 
fundamental properties of the atoms. 

2.2. Principle of Discrete Dislocation Dynamics 

The concept of 3D discrete dislocation simulations was imagined by L. Kubin, 
Y. Bréchet and G. Canova in the early 1990s [KUB 92], [DEV 92]. The first code 
Micromégas was a simple model for which dislocation lines of a f.c.c. single 
crystal are sub-divided into sets of edge and screw dislocation segments embedded 
in a continuum medium as pictured in Figure 2.2a.  

 

Figure 2.2. (a) Edge-screw discretization of dislocation lines;  
(b) internal stresses induced by edge and screw segments 

Each dislocation segment generates a long range elastic stress field within the 
entire simulated sample. In the case of isotropic elasticity, analytical expressions for 
the internal stress generated by a finite segment have been established by J.C.M. Li 
[LI 64] and R. DeWit [DeWIT 67]. Taking into account the anisotropy of the elastic 
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medium is more challenging in term of calculation time since there is no explicit 
relationship. We can however use the line integrals proposed by J. Willis [WIL 70].  

Using linear elasticity properties, the effective stress applied on each dislocation 
is evaluated at the middle point of each segment as the superposition of the internal 
stress induced by all the segments in the simulated volume and the applied stress 
imposed by the loading. This induces a force given by the Peach-Koehler equation 

( ) ξbσσF appint ×+=  [2.1] 

where ξ is the unit vector of the line direction and b the Burgers vector of the 
dislocation segment. In DD simulations, most of the CPU time is devoted to 
evaluating equation [2.1] since this implies N2 computations of the internal stress 
tensors, and the number of segments, N, continuously increase with time. Thus, 
many efforts have been carried out in optimizing the calculation of the internal 
stresses. As an example, Bulatov et al. recently proposed a fast multipole 
decomposition leading to N operations [CAI 06]. These optimizations can still be 
improved by using parallel calculation which is now a common option in most DD 
codes [SCH 99] [SHI 06] [ARS 07]. 

Once the force is known on each dislocation segment, the segments are 
displaced according to mobility functions which depend on the material properties. 
In the case of FCC structure, the velocity is a linear function of the glide component 
of the force whereas in the case of materials with large Peierls valleys, like BCC for 
example, the velocity of screw segments is given by a thermally activated 
relationship using a Boltzman relation [TAN 98] [CHA 06]. 

Typical outputs of DD simulations are obviously the dislocation microstructure 
but also much statistical data such as the dislocation densities, the cumulated shear 
strain, the stored energy, the local stresses, etc. Recently, methods have been 
developed in order to calculate the actual shape of any part of the crystal deformed 
by the dislocations as illustrated in Figure 2.3.  
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Figure 2.3. Example of calculation of the actual shape of a crystal deformed by dislocation 
activity. Case of a copper single crystal loaded in uniaxial tension along (112) axis 

From some points of view, DD simulations can be seen as an ideal tool to fill the 
gap between atomic simulations (MD) and continuum modeling. These properties 
explain the large dissemination of this modeling during the past few years. Today, 
there are more than a dozen discrete dislocation dynamics codes throughout the 
world [ZBI 98] [SCH 99] [GHO 00] [WEY 02] [BUL 06] dedicated to different 
crystallographic structures but all based on similar ingredients. The studies 
presented hereafter have all been performed using the code Tridis developed in 
Grenoble, France [VER 98]. 

2.3. Example of scale transition: from DD to Continuum Mechanics 

2.3.1. Introduction to a dislocation density model 

The development of constitutive equations for crystal plasticity is still 
challenging today. The objective is always to derive a set of behavior laws including 
most of the physics involved during plastic deformation. In the case of crystalline 
materials, this involves accounting for dislocation properties at the continuum scale. 

In this section, we present a crystal plasticity model for which the dislocation 
densities on the different slip systems are the internal variables. Three equations are 
needed to relate the stress to the plastic strain. We should note that each law is 
derived from physical considerations of dislocation motions. 
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2.3.1.1. Constitutive equations of a dislocation based model of crystal plasticity 

Plastic behaviors of crystals have been studied since the early 1960s [TEO 75]. 
Let us consider the motion of a single dislocation gliding on slip system s and 
embedded in a heterogenous stress field. Assuming that the dislocation motion is 
governed by the obstacles (as usually admitted for FCC structures), these obstacles 
can be classified in two categories: 

(i) obstacles inducing long-range stresses τμ like for example dislocations stored 
at grain boundaries or around precipitates; 

(ii) obstacles inducing a short-range stress field, written as τ*, like in the case of 
forest dislocations or impurities. 

τμ does not depend on temperature whereas τ* is thermally activated. Following 
this distinction, we can define a typical spatial evolution for the stress component as 
plotted in Figure 2.4. 

 

Figure 2.4. Decomposition of the stress fields felt by a moving  
dislocation at a given temperature 

When considering only the isotropic hardening, the spatial evolution of the 
athermal stress τμ is similar to a periodic function with a zero average and a large 
wavelength. When a dislocation meets an obstacle which acts within few atomic 
distances to the dislocation position, it needs an additional stress τ* to pass the 
obstacle. For each slip system s, the resolved shear stress needed for the dislocation 
motion is then  

s*ss τ+τ=τ μ
 [2.2] 
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When the time for the dislocation flight is negligible in comparison to the 
waiting time in front of the obstacle, we can write the following expression for the 
dislocation velocity [TEO 76]: 
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where νD is the Debye frequency, b the Burgers vector magnitude, ΔG0 and ΔV* the 
activation energy and activation volume respectively. 

Averaging the velocities out of the whole mobile dislocation density ρm of a 
given slip system is achieved using the Orowan equation: 

vbm
s ρ=γ  [2.4] 

When the effective resolved shear stress is moderate (less than 70% of the value 
at 0 K, we can neglect the inverse probability so that the sinh in equation [2.4] is 
replaced by the negative exponential part. Replacing τ*(s) by (τμ

(s)−τ(s)), the first 
order approximation in terms of τ*s/ τμ
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Equation [2.5] is the flow law written under the classic form of a power 
relationship between strain rate and normalized stress. 

Let us briefly recall the assumptions needed to establish this equation. Equation 
[2.5] is valid for moderate values of τ*(s). Moreover, the first order approximation 
implies that τ*(s)<< τμ

(s). These conditions are fulfilled for most FCC metals within a 
range of temperatures lower than 0.3 Tf, (so-called cold regime of deformation). 
Parameters )s(

0γ and n have been established from an average performed over all the 
mobile dislocations within a given slip system so that the three macroscopic 
variables τ*(s), ΔG0 and ΔV* are now pseudo-phenomenological constants although 
the underlying physics is still there. In other words, this means that we need to 
identify the value of these parameters. 

Strain hardening is defined by the increase of the athermal stress τμ
(s) with the 

internal variables, i.e. the dislocation densities. Such a relationship is introduced 
through the Mecking and Kocks equation [MEC 81]: 
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F
(s)
μ bτ ραμ=  [2.6]  

where ρF is the forest dislocation density and α a coefficient close to 0.3. This 
equation can be split over the 12 slip systems of the FCC crystal using a matrix a 
which corresponds to the slip system interactions. 
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The closed form of the system of constitutive equations is obtained by the 
writing the evolution of the dislocation density with the deformation. The 
relationship can be explained from statistical considerations of dislocation 
production and annihilation [MEC 81] [ESS 79]. 
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This equation involves a storage term with a mean free path of the form Λ=K/√ρ 
and an annihilation term based on the annihilation distance yc=βR. Equation [2.7] 
implies that dislocation densities will saturate when the production term equals the 
annihilation term leading to a saturation of the isotropic hardening. 

Finally, the crystal plasticity model is defined by the set of three equations [2.5], 
[2.7] and [2.8]. They can be rewritten in a classical form by calculating the 
derivative of [2.7] and introducing (s)ρ  given by [2.8]. This gives: 
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Note that these constitutive equations are only valid for monotonic loading since 
they do not account for any kinematic hardening. 

2.3.1.2. Parameter identification 

The DD model presented in section 2.2 is well adapted to identify the 
coefficients involved in this dislocation density-based model of crystal plasticity. As 
an example, any asu coefficient of the hardening law can be determined by 
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simulating the interaction of slip systems (s) and (u) and measuring the shear stress 
applied on system (s) needed to force it to cross the population of dislocation on 
forest system (u) of density ρ(u) [FIV 97]. Following this idea, we can identify the 
12x12 coefficients of matrix a (which is restricted to 5 independent values 
depending on the 3D geometry of the system interaction a1

copla, a1
ortho, a1

coli, a2, a3). 
Recently, Devincre et al. [DEV 06] found the following values for copper single 
crystals: a1

coli=0.625 ±0.044; a3=0.122 ±0.012; a2=0.137 ±0.014; a1
copla ≈ 

a1
ortho=0.0454 ±0.003. 

Similarly, it is possible to measure the values of coefficients K and yc from DD 
curves giving the evolution of the dislocation densities on the different slip systems 
with the plastic deformation [FIV 98] [TAB 98]. 

For copper, we find a typical value K=32 for the mean free path and yc=3.b for 
the annihilation distance. 

2.3.1.3. Application to copper simulations 

The constitutive equations are easily introduced in a finite element code such as 
ABAQUS using the User MATerial routines. Using the parameters identified by DD 
simulations, we can now simulate the visco-plastic behavior of any single crystal 
under a given loading. Note that polycrystalline materials can also be simulated 
provided the mean free path involved in equation [2.8] is modified in order to 
account for the distance between the integration Gauss point and the grain 
boundary. 

Figure 2.5 shows the simulation of a copper single crystal loaded in tension 
along the ( 251 ) direction. 

 

Figure 2.5. Simulation of a tensile test along ( 251 ) 

Initially, the Schmid factor is the highest on system B4: ( )[ ]011111 . This 
corresponds to stage I where the hardening rate is weak since there is only a single 
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slip system activated. If rotations are allowed in the grips as shown in the deformed 
mesh plotted in Figure 2.5, the Schmid factor changes with the plastic deformation 
cumulated in system B4. This activates a secondary slip system C1: ( )[ ]011111 . 
Dislocation activity in system B4 is then modified by the forest dislocations of 
system C1 so that the hardening rate is more pronounced. This is the stage II regime. 
Finally, as soon as the two dislocation densities are closer to the saturation value, 
the stress tends to saturate so that the hardening rate decreases in the so-called stage 
III. 

2.3.1.4. Taking into account kinematic hardening 

Fatigue simulations performed in DD (see section 2.4) revealed the effect of 
dipole interactions on the mechanical response of a single crystal of copper 
submitted to a cyclic loading. This gave information on the intra-granular hardening 
and more precisely on the kinematic part of the hardening, i.e. the hardening stress 
which can be recovered when the loading is reversed. This section presents a model 
that can reproduce most of the experimental features of fatigue [DEP 08]. The 
model is based on dipole interactions and can nicely complete the set of constitutive 
equations presented in section 2.3.1. It can be shown from dislocation theory [HIR 
82], [FRI 64] that a dipole of height h has a strength s written as  

h)1(8
bs

ν−π
μ=  [2.10] 

The distance h is easily estimated from DD simulations. Figure 2.6a shows a 
typical dislocation microstructure within a grain cyclically loaded in pure shear with 
a plastic strain amplitude Δγp=3.10-3. The distribution of the dipole heights is 
reported in Figure 2.6b.  

 

Figure 2.6. Thin foil taken out from a DD fatigue simulation  
and distribution of dipole heights 
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Assuming that the height distribution follows a Gaussian function, experiments 
show that the mean value evolves as ρ1  [CAT 05] so that the distance decreases 
when the dislocation density increases. The corresponding dipole strength can now 
be calculated using equation [2.10] as shown in Figure 2.7 for two values of the 
dislocation density in the DD simulation.  

 

Figure 2.7. Distribution of the dipole height and corresponding dipole strength  
calculated for two values of the dislocation density 

For the sake of simplicity, we will assume that the strength distribution also fits a 
Gaussian function f(s) defined by the average value s  and the standard deviation σs: 

( ) sds)s(fss;Gbds)s(sfs
0

2
s0 0 λ=−=σρα+τ== ∫∫

∞∞  [2.11] 

As shown in equation [2.11], the average value is supposed to be proportional to 
the dislocation density via a classical relationship proposed by Mughrabi [MUG 75]. 
Moreover, experiments show that the standard deviation is proportional to the 
average value using a constant coefficient λ [CAT 05]. This behavior was recently 
confirmed by DEPRES using DD simulations [DEP 04]. 

Locally, the stress may destabilize the weakest dipoles which can then contribute 
to the shear strain rate as: 

( )Xsign
s

X m/1

0s −τ−τγ=γ  [2.12] 
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where X is a long range internal stress induced by the strain gradients. The 
displacements induced by the dislocation on the grid located in Figure 2.6 point out 
these gradients. The corresponding deformed mesh is plotted in Figure 2.8. The 
three marks indicate that extra dislocations are located between marks 1 and 2 and 
also between marks 2 and 3. 

 
Figure 2.8. Evidence of extra dislocations inducing strain gradients 

These excess dislocations (often called geometrically necessary dislocations) are 
all pinned on dipoles. Thus, they induce a back stress on the source from which they 
have been emitted. This kinematic back stress can be roughly estimated as the stress 
induced by an equivalent dislocation loop of radius r  with a net Burgers vector Nb. 
The number of loops N is directly related to the difference between the local 
deformation at the dipole location and the macroscopic strain γ: N=(2R/b)(γ-γs). 
Thus, the back stress, X is given as X=ANG/2 r  where A is a geometric parameter 
depending on the actual geometry of the grain and the dislocation loops. Replacing 
N by its dependence over the shear strain, we finally obtain: 

( ) ( )γ−γ=γ−γ= ss MG
r
RAGX  [2.13] 

DD simulation shows that the geometric coefficient M is close to a constant 
M≈2. Equation [2.11] can now be introduced in equation [2.12] in order to define a 
new flaw law accounting for kinematic hardening.  

The constitutive model based on equation [2.11], [2.12], [2.13] can be completed 
by dislocation evolution law [2.8] so that it can be used to derive the mechanical 
response of a grain submitted to a cyclic loading. A typical response is given in 
Figure 2.9 together with the experimental results of Mughrabi [MUG 78]. Numerical 
results were obtained with M=2 and λ=0.8. 
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Figure 2.9. (a) Predicted hysteresis loops for a given imposed plastic strain amplitude 
Δγp=3.10-3 and loop shape obtained for different imposed strain amplitude; (b) corresponding 

experiments published by Mughrabi [MUG 78] 

The proposed model is in very good agreement with the experimental 
measurements of Mughrabi, both for the evolution of the hysteresis at a given 
imposed stain amplitude and also for the shape of the cycle reached at saturation for 
different strain amplitudes. To conclude this part on the kinematic hardening, let us 
recall that the proposed model only adds 2 constants M and λ to the original 
isotropic hardening model. Here, a simple scalar model is presented but it can easily 
be written in a tensor manner and implemented in finite elements to treat any 
complex path loading. 

2.4. Example of DD analysis: simulations of crack initiation in fatigue 

2.4.1. Case of single phase AISI 316L 

In power plants, AISI 316L stainless steel is usually used in the internal parts of 
the cooling systems. When subjected to thermal fatigue, as in the case of the 
injection of a cold fluid in the circuit, transgranular fatigue cracks are observed. In 
order to study the crack formation, the CYTHIA experiment (CYclage THermique 
par Induction des Aciers) has been conceived at Commissariat à l’Energie Atomique 
(CEA/SRMA). This ideal experiment consists of cyclically heating a pipe using a 
high frequency induction coil whereas the inner part of the pipe is constantly cooled 
by flowing water. Transmission Electron Microscopy (TEM) observations of the 
surface grains located at the outer part of the cylinder show a dense dislocation 
microstructure organized in bands typical of fatigue behavior of this type of material 
[MUG 92], [LI 94], [OBR 94]. Atomic Force Microscopy (AFM) observations of 
the grain surface show that with the cycles, the persistent slip bands lead to the 
development of extrusion and intrusion relief at the surface [MAN 02], [MAN 03] 
that may induce cracks.  
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Many DD simulations with various conditions of loading amplitude and grain 
size were performed with a view to explain both the formation of the persistent slip 
bands [DÉP 04b] and the relationship with the surface relief and the nucleation of 
the first crack [DÉP 06]. As shown in Figure 2.10, the simulation volume 
corresponds to an isolated grain with one free surface. The applied loading is 
assumed homogenous within the entire grain and the grain boundaries are treated as 
impenetrable obstacles to the dislocation motion. For all the simulations the plastic 
strain amplitude is imposed and only two glide systems sharing the same Burgers 
vector are considered. The initial dislocation configuration consists of a single 
dislocation source whose characteristics are given by the TEM observations 
performed on CYTHIA samples: the Burgers vector is nearly aligned with the 
vector normal to the surface. Both pure shear and double glide loading conditions 
have been tested. 

 

Figure 2.10. Initial configuration of the dislocation simulation and typical dislocation 
microstructure obtained after 25 cycles performed with imposed plastic strain amplitude 

It was found that the cross-slip mechanism plays a crucial role in the 
organization of the dislocation microstructure [DÉP 04b]. First, it allows 
dislocations to invade the whole grain leading to a beneficial homogenization within 
the simulated volume of the plasticity. Then the numerous reactions of the 
dislocation lines on the two interacting slip systems lead to the formation of intense 
slip bands as shown in Figure 2.10. DD simulations explained in detail the 
mechanism at the origin of this typical dislocation organization. After a few cycles, 
edge dipoles are formed in the so-called vein structures and when dislocations from 
the cross-slipped system shear these zones, the dislocation lines recombine and form 
a complex microstructure containing channels, entangled zones and piled-up 
dislocations as depicted in Figure 2.11 below.  
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Figure 2.11. Schematic description of a persistent slip band as observed in DD simulations 

The dislocations within the channels consist of multipoles made of prismatic 
loops and helicoidal dislocations. The density of multipoles continuously increases 
with the cycles, storing more and more energy in the band. Note that the mobility of 
these dislocations is restricted to a cylinder defined by the loop size and the Burgers 
vector. Under a homogenous stress field, the multipoles cannot move. Inversely, 
when submitted to a stress gradient, they can glide in the channel and possibly reach 
the surface where interstitial loops print tongue-like extrusions and vacancy loops 
leave a punch in the surface (intrusion) as shown in Figure 2.11. 

Complementary analyses of the surface relief were performed when the imposed 
plastic strain is at maximum. It was shown that all the plasticity is localized at the 
interface between the slip band and the matrix. At this place are located highly 
mobile dislocations (see Figure 2.10) which completely accommodate the imposed 
plasticity. Note that such dislocations are hardly observed in microscopy since 
observations are usually performed post mortem and only a few experiments are 
carried out in situ [LEP 85]. When these dislocations move, they induce a stress 
gradient on the multipoles which drive them out of the volume.  
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Figure 2.12. Evolution of the surface relief with the cycles. The computation  
is performed on the grid indicated in Figure 2.10 

The crack nucleation was studied by calculating both the energy and the stress 
state in the bands. As discussed previously, the multipoles store energy in the band 
with the cycles. However, DD simulations show that the stress component needed to 
open a crack is saturated after a few cycles. This means that a crack can not initiate 
inside the bands but rather at the surface where the stress is concentrated by the 
extrusion/intrusion shape of the surface relief. From a simulation campaign 
performed with different values of the plastic strain amplitude, the mean strain, the 
grain size, the grain shape and the stress triaxiality, it was possible to derive the 
effect of these parameters on the fatigue life [DEP 06]. It was found that the 
extrusion growth is a linear function of the strain range and grain size and evolves 
as a square root function of the number of cycles. When comparing these 
predictions of the extrusion growth rate with the experimental measures [MAN 03], 
[MAN 02], we can note a good agreement for the first few cycles and a discrepancy 
for the large number of cycles. The difference can be attributed to diffusion of point 
defects that could change the square-root relationship into a linear form. Despite this 
limit, the predictions derived from the DD simulations are of great interest since the 
experiments show that the crack always initiates very early in the cycling process, 
i.e. where the DD prediction is relevant.  

2.5. Conclusions 

This chapter presented two studies involving discrete dislocation dynamics 
simulations. In the first example the DD code was used to identify constitutive 
equations of a continuous model of crystal plasticity. The model being based on 
dislocation densities, quantities were calculated by DD simulations and a complete 
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visco-plastic model of a FCC crystal taking into account both isotropic and kinemtic 
hardening was proposed. 

The second example concerned a study of crack initiation in fatigue where DD 
simulations explained the formation of the dislocation microstructure into the typical 
persistent slip bands observed in experiments. It was shown that the extrusion 
printed at the surface of a grain stressed in fatigue can be obtained with dislocation 
motions. There is no need to account for a non-conservative mechanism such as 
diffusion of point defects. Finally, a prediction of the fatigue life was obtained 
through a simulation campaign of DD simulations. 

In many cases, DD simulations need information from a lower scale in order to 
specify local rules that cannot be fulfilled by elastic theory. As an example, the 
dislocation mobility in BCC materials is related to the core of the dislocations. Such 
information can be obtained from atomic simulations [CHA 06]. Then DD 
simulations can be used to analyze the collective effect of a large population of 
dislocations and fill the gap between atomic and continuum scales. 
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