
Chapter 7

Integration Myths

Drawing on our practical operational experience in application integration
projects, we have been able to inventory a well stocked catalog of conventional
wisdom on the subject.

The preoccupations that underlie these ideas are generally legitimate. But
sometimes – often – the responses to them are “cookie cutter” responses, and can
lead to more or less camouflaged failures. This is why it seems important to us to
shed some light on them.

7.1. The mirage of the single tool

How many times have we heard or read the following statement: “one single tool
responds to all requirements”!

When an IT director (often the Chief Information Officer) takes a long, hard look
at the technical architecture of his or her IT department with the goal of technical
component evolution, it is not uncommon that a consulting firm, generally after
careful study of the different technologies on the market, selects a single technology
to treat the entire problem addressed.

The choice is performed by favoring:

– innovative technology – after all, architectural consulting firms are also paid
for integrating innovation inside IT – otherwise, what use are they?

156 Application Integration: EAI, B2B, BPM and SOA

– or perhaps just the technologies that the architects are aware of. What good
does it do to change, since the architects in question are fully conversant with the
technology? At least they will be fairly certain that their competence will still be
required when the technology of today is also the technology of tomorrow.

With regards to application integration, this type of behavior can bring about the
failure of the integration solution.

Some examples given below will illustrate the idea.

7.1.1. A conservative choice: example and consequences

For several years, the enterprise ENERGY ONE, positioned in the corporate
services market, has been using an ETL tool to input its data warehouse repository.
Data is extracted regularly (once per day is functionally sufficient) from production
databases, validated and cleaned (with a check on functional doubles), then injected
into databases of the data warehouse repository. With the success of this technology
in mind, ENERGY ONE decided to generalize the use of the ETL to cover the
whole of the application integration problem, specifically for:

– managing intra-enterprise business flows (real-time and “batch file”);

– exchanging with its partners.

As one result, a generalized use of an ETL tool pushes the limits of a
commercialized product that was never designed:

– to manage exchanges with a frequency greater than one session per hour. This
is normal; this was not its initial objective;

– to pilot file flows with partners at an adequate level of quality of service. The
use of FTP upstream and downstream from the ETL does not always allow the
integrity of those files to be ensured;

– to verify the quality of services supplied to or received from the partners. The
ETL tool provides no function for dataflow supervision;

– to offer real-time exchanges to the departmental applications which had
signaled their need for them. The ETL tool functioned only by extracting/integrating
files that use databases.

Faced with the lack of enthusiasm raised by the large-scale deployment of this
technology, ENERGY ONE found that it had to:

Integration Myths 157

– refocus the use of the ETL tool around its standard function of updating the
data warehouse;

– restore the choices around application integration back to the different business
departments – the CIO no longer had the credibility necessary to put a solution
together.

On balance, the feeling inside the enterprise about application integration was
negative. ENERGY ONE will not be restructuring its integration strategy anytime
soon. The status quo and the principle of “every man (or every department) for
himself” will be engraved there for a long time to come.

7.1.2. “Modern” architectural choice: example and consequences

Refer here to the concrete example presented in section 11.2.

7.2. XML: miracle format

Another statement we have often read or heard: “all formats must be XML
formats – this guarantees the use of standards”!

Taking nothing away from the relevance of XML-type format (see sections
3.2.1.1 and 4.3.2), it is however important to recognize that its success among
analysts, architects, software providers, and also among users, has resulted in the
construction of a kind of Tower of Babel, perhaps with the same tools, but with
bricks of completely different shapes, sizes and colors.

Several hundred and perhaps thousands of business “standards” use the XML
format, though no general standardization has yet been defined by a “United Norms”
organization, or has been publicly accepted by all stakeholders, even on attributes as
universal as names and addresses, for example. A certain number of endeavors are
however underway, for example, at OASIS around UBL (see section 4.3.2).

However, in the view of many decision-makers responsible for integration
choices, XML offers a certain guarantee of simplification. If this is true for
computing applications (which can indeed capitalize on a single grammar for
writing or reading the dataflows for which they are responsible), it is inexact if not
utterly false in everything that concerns the supposed uniqueness of the formats
produced.

158 Application Integration: EAI, B2B, BPM and SOA

There has never been a greater need to for integration engines to transform XML
formats to other XML formats.

Why should this be a problem? Is this not precisely what integration engines are
for?

This is a problem because these transformations have a high cost in terms of
performance (see section 3.2.1.1).

Like variable type formats – of which they are only a particular type – XML
formats require dataflows to be parsed on input to search for the information to be
checked or to be transformed in an integration.

As for transforming a format of the fixed length/position type (where, by
definition there is no need to “parse” the information, since each type of data is in
the same place in the record or the message), it requires on average five to ten times
as much time to process the same business event in an XML-type format as in a fixed
format. That ratio can vary slightly depending on the commercially available tools.

By way of illustration, an integration engine specialized in fixed position/length
formats was able to process 100 million events in four hours on a mainframe CPU.
That performance level is simply not currently accessible to XML formats, even
after associating functions of parallelism, multithreading, and scalability proper to a
significant number of integration engines on the market.

The “all-XML” approach therefore has a cost that will make a lot of people
happy... so long as they are among the providers of the hardware and software
resources required to process the required volumes!

The concrete example presented in section 11.2 provides an excellent illustration
of this problem.

7.3. Business adapters: simplifying the implementation

We often hear or read the peremptory statement: “the more business adapters in
the solution, the simpler it is to implement”!

One of the selection criteria admitted by the entire community consists of
searching for market solutions that include the largest possible number of thick
(business) adapters.

Integration Myths 159

Let us recall that a business or “thick” adapter (see section 3.1.3.3) is a
component – placed between the business application and the integration engine –
which provides connectivity functions (notably communication protocol) and which
guarantees that the format sent or received conforms to the specifications expected
by the business application. Information about the wrong or right integration (in the
business meaning of the words) is also part of the package.

Common sense leads then to the idea that the more business adapters that are
available, the simpler the integration between the applications.

Faced with these good sense arguments, providers of integration solutions step
into the breach by presenting in their commercial brochures the largest possible
number of thick (business) adapters. One such software provider – since absorbed
by a market heavyweight – went so far as to make that its principal sales argument.

Indeed, this criterion is easy to understand and quantify, initially by potential
clients, but also by the sales force for a software vendor, where anything that looks
like routinizing the sales cycle is manna from heaven.

How does it happen then that in the real world, application integration based on
solutions that comprise a large number of business adapters has produced no
significant benefit compared to a solution which uses technical adapters – not in
delays, not in implementation workload?

In a significant number of cases, the deployment objectives for this type of
solution were lowered. Why?

First of all, by definition, there is no business adapter available on the market for
specific applications developed for a given client.

In the case where the integration need is strongly centered on existing, often
specific applications, the presence of business adapters in software providers’
catalogs has therefore strictly no interest.

However, what about the case of integrating commercial software packages,
such as solutions for managing customer relations or production, or the accounting
and financial modules at the core of ERP (Enterprise Resource Planning)?

As the real-life example below illustrates, disillusion here can be sharp.

160 Application Integration: EAI, B2B, BPM and SOA

7.3.1. Business adapter: implementation – maintenance – problem

As part of our consultancy missions, we were called on by the CIO of a large
French industrial manufacturing group who had:

– acquired an EAI solution with a good market reputation;

– chosen a commercial ERP to manage its financial back-office;

– purchased the adapter corresponding to the selected ERP and offered by the
provider of the EAI solution.

Concerned with verifying the operational side of the said adapter, the CIO’s team
were given a convincing demonstration in the software provider’s offices.

Once the solution was chosen, the project was implemented – and it is at that
point that the problems started.

Extracts from our interview with the CIO:

“First of all, we chose the ERP version that conforms to our business needs. In
addition, since part of the interest of ERP is that we can specialize it using its
capacity to accept our specific additional parameters and business objects, we did
not distrust the adapter. We thought that, in spite of adaptations, it would always
function.”

“However, when the provider of the EAI solution delivered the corresponding
business connector to us, we were incapable of connecting it to the ERP as
configured. After consultation, the supplier indicated the following precisions to
us.”

Response of the provider to the CIO:

“This connector is certified on the version X of the corresponding ERP.

“Its native operation with a different version is perhaps technically possible but
does not commit us (which was in fact indicated in the contract, but not emphasized
in discussion).

“The ERP parameters which your teams have specialized probably mean that
you will have to adapt the adapter.

“We [the provider] could undertake this adaptation, under the conditions
described in your service contract.

Integration Myths 161

“We remind you that this adaptation does not fall under maintenance clauses of
the corresponding software packages, but that it could be the subject of a
‘services+’ contract, whose measures could be communicated to you.”

It therefore became necessary to ... “adapt the adapter”!

Rapidly, a meeting was convened between the provider and the integrator
responsible for the EAI solution. It became apparent that the adapter had to be
modified to serve the needs of the client. The solution provider accepted that the
integrator would ensure the necessary modifications, because the provider did not
have the local resources to provide this service. Maintenance conditions for the
adapter (ensured by the provider or by the integrator) remained fuzzy.

Results assessment for the enterprise

We advised the enterprise to deploy and use technical adapters as much as
possible (files, messages, DBMS, etc.). These adapters are by definition more stable
than thick (business) adapters.

The enterprise, which had acquired a significant number of business adapters,
reduced their use.

7.3.2. By way of a conclusion on business adapters

Too many business adapters can ultimately damage the adaptability of the
solution, since the cost of their maintenance becomes very steep with respect to the
parameter definitions carried out inside the EAI solution.

We end up then with the paradox that searching for a significant number of
business adapters during the Request for Proposal (RFP) phase can in fact often
delay later solution deployment.

Even so, when business adapters are stable with respect to changes in the EAI
solution and in the ERP, then they ensure relevant connectivity for application
integration solutions, in particular by ensuring more advanced tracking for updates
to events inside the concerned application.

162 Application Integration: EAI, B2B, BPM and SOA

7.4. Java: the proof of a modern solution

“A modern application integration solution must be constructed in Java!”

Without in any way wishing to undercut the interest of Java either as a language
or a development platform, we are forced to observe that, in the domain of
application integration, the use of Java should be marked “handle with care”.

7.4.1. The real reason for Java

As with C, C++ or even COBOL, Java is a development language. Its level of
abstraction remains that of a third-generation language. Its readability and
maintainability are not easy – in any case, not better than if Java was used natively
in the specifically developed applications.

However, part of the interest in an integration solution resides in the simple and
“auditable” nature of the parameter settings ensured by the integration broker. The
language or “mappings” of the broker must be rapidly adaptable around business
developments.

Massive use of a language such as Java entails no significant benefit in terms of
maintenance between an integration broker and specific interfaces also written in
Java. In this case, bypassing the broker in favor of specific development would save
the cost of the licenses.

On the other hand, when significant language power is required, then recourse to
third-generation languages – including Java – inside the integration broker is useful.

Java or any other third-generation language can then ensure generic functions
such as:

– accessing business repositories;

– performing complex calculations;

– proceeding to global checks and generic types on the events that are checked
and transformed.

In the real world, one of the conditions for the success of an integration broker in
an enterprise requires a balanced proportion between the use of a third-generation
language such as Java, and the parameterization of the broker as such, which should
be high-level. Ideally, 80% of the functions for checking, transforming, and content-

Integration Myths 163

based routing must be processed by mapping functions or with a high-level18
language. The remaining 20% falls in the domain of a third-generation language
such as Java.

7.4.2. Limitations of an all-Java integration solution

The interest of Java as a development platform no longer needs to be
demonstrated. Its capacities in deployment, its “natural” scalability for executing
processes and its “once-only” development make Java one of the most interesting
standard platforms on the market.

For all of that, if integration solutions are “all-Java”, then what about
applications that execute on other platforms?

Why should the integration needs of a technical universe such as Windows and
above all IBM z/OS simply be ignored?19

Here again, it can be useful to analyze the real need of the enterprise in terms of
the classification of different operating systems, in order to decide whether or not to
depend solely on a Java platform.

7.5. Files: the “poor cousins” of application integration

“File dataflows are a side issue in application integration!”

As we saw in Chapter 3, in the majority of cases, application integration relies on
an asynchronous exchange pattern. The application sends information to the
application integration solution, not waiting for the response before continuing with
other work. The information will be distributed to the different partners at an
opportune moment.

MOM tools (see section 3.1.2.3) are natural candidates for “supporting” the
dataflows that transit an application integration solution.

There is but a single step between considering file exchanges as outside the
spectrum of application integration, and seeing it as the “poor cousin” of dataflow

18 On the other hand, nothing stops this high-level language from being constructed on the
basis of macro-functions written in Java.
19 Even if today, Java virtual machines exist for z/OS, their connection with native z/OS
applications is not yet entirely operational.

164 Application Integration: EAI, B2B, BPM and SOA

messaging. The step is often taken, because the majority of the offerings on the
market were designed to process dataflows in message mode and not in files.

However, the studies on the subject all point in the same direction: in inter- and
intra-enterprise exchanges, file dataflows are in the majority, and represent between
65 and 80% of the total. Not taking them into account ends up taking care of only
about one-third of the needs – at best.

Implementing an application integration solution that must process file dataflows
is a response to particular problems, that the simple implementation of file adapters
upstream and downstream the integration solution does not resolve:

– Is the file a carrier of one or more functional integrities?

– In case of error detected by the application integration solution on one or more
records in the file, should the whole file be blocked, or should all or part of it be
allowed through?

– In case of error in processing by the sending application, how is it possible to
be sure that sending the application did not re-send the file, including all the initial
records that were not in error? And in that case, how is it possible to be certain that
the same records are not processed twice?

– The volume of files to be processed is generally much more voluminous than
messages. How then can we be certain that the integration engine was designed to
handle such volumes?

Certain elements in the response are indicated as part of the concrete example
presented in section 11.2.

7.6. Process and services are everything

“Goodbye application integration. Hello processes and services – everywhere!”

As we have previously underlined, the computing industry is perfectly content to
stage its own revolutions. A new technology must drive out other, older ones
because they are not adapted to the new issues that confront enterprises.

In fact, in the real world, application integration is a good deal more complex
and multi-form subject.

It is commonly noted that EAI is mature technology, and that Business Process
Management and SOA should now be installed everywhere “in double-quick time”.
This type of profession of faith has the advantage of simplifying the discourse from

Integration Myths 165

suppliers, making sure that potential clients can hear and understand it. It has only
two drawbacks: it is dangerous and costly.

It is dangerous to lead business requirement teams to believe that just modeling a
process will easily lead to aligning the information system with the business of the
enterprise (see section 4.4). If the existing IT applications are not designed with
services in mind from the outset, it will be difficult, perhaps impossible, to adapt
them. Consequently, new SOAs will have to be developed from scratch, with all the
associated delays and costs. It will not make matters better to use the same “design”
workstation for setting the parameters in the application integration solutions and
modeling the business processes. Indeed, the pace of modification to a business
process is different from that of an integration layer. In addition, neither the user
populations nor the preoccupations of the two approaches are the same.

It is dangerous to spread the idea that all the business processes in the enterprise
must be orchestrated. For example, in an energy company, what is the use of
handling the purchase of office supplies in process mode? What business benefits
exist when the simple implementation of a B2B platform for management of the
orders is quite sufficient?

It is costly to launch a broad-spectrum approach to modeling the processes of the
enterprise, without questioning the link between this modeling and the underlying
functional and technical models for the applications in the corresponding
information system.

As was expressed recently by an architect responsible for large-scale deployment
of processes inside his service delivery enterprise: “We underestimated the problems
of aligning the business models with the execution models in the information
system”, a coyly roundabout way of indicating that at the end of four years, only
five operational processes had been deployed, and the modeling of 150 others had
been committed, after spending hundreds of person-years on the entire project.

We want to be quite clear: we are a long way from the idea of hollowing out the
genuine interest in making BPM and SOA solutions available. Still, they must be
used advisedly, i.e., on processes and service approaches with high added value that
“deserve” spending the necessary means.

7.6.1. BPM and SOA: top-down approach – from business to IT

In this approach, processes that create value in the enterprise must be identified
to make sure that they are eligible for process industrialization. Then the adaptations
required in the information system must be committed to. This top-down approach
proceeds from business to IT.

166 Application Integration: EAI, B2B, BPM and SOA

Organizationally in this case, we would expect to find business managers in the
front line. They are they ones who necessarily must impose constraints in adapting
existing applications that are typically implemented by the project execution teams.

7.6.2. EAI and B2B: bottom-up approach – from IT to business

The other processes of the enterprise will not be treated as such but implemented
in a context of exchange platforms and/or of the flow manager20 that implements
services for:

– securing the transport layers for the information;

– ensuring functions of information distribution;

– offering services for transformation, routing and control of dataflows.

Organizationally, it is the project execution teams that deploy the required
exchange platforms or dataflow managers. The business managers are generally
called on to ensure the transformation functions and the business checks.

7.6.3. Complementary approaches

Far from being contradictory, the two approaches are in fact complementary.
Each approach supplies supervision services that are pertinent for the enterprise:

– technical supervision of the transport layers;

– supervision of the dataflows exchanged in A2A or B2B;

– supervision and audit of technical and business transformations;

– process supervision;

– quality of service supervision;

– business supervision.

20 Or again, the exchange process sub-level.

