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All these results could be extended to statically indeterminate structures but with
a more delicate physical interpretation. In practice, effective mass models are only
currently used for rigid junctions.

5.4. Modal effective parameters and dynamic responses

5.4.1. Frequency responses

Relations [5.35] to [5.37] show that any FRF X(w) coming from G (w),
T, (@) or M ;; () is of the form:

X(@)=Y 4 () X +X
> A (@) X

[5.57]

res

(subscripts of the DOF omitted for the sake of convenience, excluding the statically
indeterminate term from [5.37]) with:

— A4; (w) dynamic amplification H (@) or Ty (@);
- X « modal effective parameter (N;@ , T, &k or M ks

-X T,

residual parameter G res

res or MI’(:‘S .

res >
Other types of FRF are deduced by multiplying or dividing by iew. Form [5.57] is

therefore general. Graphically, its amplitude using logarithmic scales is illustrated

schematically in Figure 5.7. The profile is governed by the following rules:

— at a very low frequency, we converge towards the static value equal to the sum
of the effective parameters of the retained modes, increased by the residual
parameter representing the truncated modes and possibly the junction itself
(relations [5.38] to [5.40]). Exceptions are the flexibilities of structures with rigid-
body modes and the masses of statically indeterminate structures which have a

contribution in 1/ > ;

— when the frequency increases, each mode creates a peak corresponding to its
resonance which is predominant if it is relatively isolated and if its effective
parameter is not too small. Otherwise, it can combine with the neighboring modes
and perhaps disappear visually from the curve;



154  Structural Dynamics in Industry

— between two peaks, i.e. a minimum occurs between two consecutive modes
which are not too close and with similar importance. This minimum will take one of
the following two forms according to the corresponding phases:

- if the effective parameters of the two modes are of the same sign, the two
contributions are antagonist and result in a very small amplitude, hence an “anti-
peak” corresponding to an anti-resonance, the sharpness of which is similar to that
of the neighboring peaks. For a sine motion at this frequency, this is a vibrational
node. With reference to the last comment in section 5.2.1, any driving-point FRF
should present only anti-resonances,

- if the effective parameters of the two modes are of an opposite sign, the two
contributions add to each other and give a significant amplitude, hence a local
minimum or “trough”. There shouldn't be any in a driving-point FRF. Conversely, a
transfer FRF may have both anti-resonances and local minima depending on the
signs of the corresponding effective parameters.

(log) |X|‘ ‘)N(@‘Qg

(1) same sign
(2) opposed sign
for adjacent X i

Figure 5.7. FRF profile G(®w), T(w) or M(w)
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The FRF profile can vary considerably according to the value of the effective
parameters, damping and the proximity of the modes. Generally, the peaks are rather
well distinguished at low frequencies where the modal density is low, then become
progressively coupled towards the high frequencies. In an experimental context,
measurement noise may perturb the profile to a certain degree and mask certain
aspects, especially the anti-resonances.

Note that for a given structure, the peaks of all FRF will be located at the same
frequencies, those of the normal modes, while the frequencies of the anti-resonances
will depend on the FRF considered.

As an illustration several different possible situations with the simple cases in
Figures 4.1 and 4.3, we obtain the following plots:

— Figures 5.8 relative to the 2 internal DOF system of Figure 4.1 and to the
results of [4.9] and [5.11]:

- Figure 5.82: Gy, (@) = (3/5k) Hy(w)+(2/5k) H, ()

- Figure 5.8b: Gy (@) = (6/5k) H, (@) + (~1/5k) H, (@)
- Figure 5.8¢:  Gay (@) = (12/5k) Hy (@) + (1/10k) H, ()
- Figure 5.8d:  Tyo(w) = (3/5) Ty (@)+(2/5) T ()

- Figure 5.8¢:  Too(w) = (6/5)T) () +(=1/5) T, (w)

- Figure 5.8t: Mg (@) = (9m/5) T} (@) +(m/5) T, (w)

— Figure 5.9 relative to the 3-DOF free system in Figure 4.3 and to the results of
[4.16] and [5.12]:

- Figure 5.9a:  Gy(w)=-1/(3m a)2)+ (1/2k)Hy(w)+(1/18k) H5 (w)

-Figure 5.9b:  Gy3(w) =—1/Bmw?)+(=1/2k) H, () +(1/18k) H; (@)
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n
VIR
=T
10°
10
107
107 10 10

k1 T
0 P\
Lo
10°
10°
107+
1074 1 ‘0 1
10 10 10
e) Ty (w)
k1
| IR AN
10°
10°
107
107 10° 10"
d) Moy (@)

(m=k=1, §=2% < 0, =25)



Modal Effective Parameters 157

0 1 of R'
10° 10° .
10° 10
107 5 ' e o ;
107 10 10 107 10 10
a) G (o) b) Gy3(®)

Figure 5.9. FRF for the 3-DOF free system in Figure 4.3
(m=k=1,&=2% & 0, =25)

5.4.2. Random responses

In the case of a random excitation x defined by its PSD S, (@) (see section
1.2.3.4), the response y defined by its PSD S, (@) is deduced from this using

equation [1.39]. Starting from relation [5.57], we can thus write:

2
Syy ((()) = Z Ak ((()) )?yx,k + ny,res Sxx (@) [5.58]
k

The case of the 1-DOF was already discussed in section 2.2.5 in order to obtain
the response PSD and the rms values. Since each mode behaves like a 1-DOF
system, it is easy to deduce the following results for the rms values of the responses.

With the following hypotheses:

— the excitation PSD S .. (w), renamed W, (f) as in section 2.2.5 for the

practical applications, varies slowly in the vicinity of each natural frequency, so that
the value W, (f; ) is used for the contribution of each mode k;

— the natural frequencies f; are well separated, so that it is possible to replace

the integral of the sum with the sum of the integrals, as illustrated in Figure 5.10;
then, the mean squares are given by the relation:

— )
y?= Z(Efk ijX;,k W (fi)+ X e x° [5.59]
> k
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Each mode contributes to the mean square by the product of the term
(m/2)f; Oy, resulting from the integration of its dynamic amplification, with the

square of the implied effective parameter and the excitation PSD at its natural
frequency. As for the residual term, its contribution is the product of its square by
the excitation mean square. Relation [5.59] is easy to interpret more particularly in
the light of the scheme in Figure 5.2a.

A
(log) | x|

(log) &

Figure 5.10. Integration of the response PSD in order to find the rms values

The preceding results are valid only for one excitation and one response. They
may be extrapolated to several excitations and responses based on expression [1.42]
replacing [1.39].

With the example of the 2 internal DOF system in Figure 4.1 subjected to a
white noise in acceleration W at its base, the mean square of the response on DOF

2 is given by (with Or =10 and the results [4.9] and [5.11]) :

PR 2 2
iy =710 Ky M) L1V :(2.08+0.14)\/sz0 [5.60]
227 \m 5 3 5 m
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5.4.3. Time responses

For a FRF X(w) of form [5.57], the response y(?) to an excitation x(¢) is given by
the convolution integral [1.30] with the unit impulse response given by the inverse
Fourier transform FT ™' of X(w). By writing that the transform of the sum is equal to
the sum of the transforms, we obtain:

y(t) = Z( f; X(0)FT7 (4, (w)) dr) Xyt 0,6(0) [5.61]

we can see that each mode contributes to the response by a product, that of the
effective parameter with the convolution of the excitation and the unit impulse
response fy () or t;(t)of relations [2.60] or [2.61]. With regard to the residual

term, it provides a residual term for the response in a similar way.
Using the example of the 2 internal DOF in Figure 4.1 subjected to an
acceleration impulse at its base, the time responses in Figure 5.11 are obtained:

— Figure 5.11a: response on DOF 1: i1 (£) =(3/5)t; (1) +(2/5)t,(?);

— Figure 5.11b: response on DOF 2: i1, (£) =(6/5)t1(£)+(=1/5)t,(¢) .

a) i (1) b) 1, (1)
Figure 5.11. Impulse response of the 2 internal DOF system in Figure 4.1
m=k=1, {,=2% < 0;,=25)
5.4.4. Time response extrema

The response spectra introduced in section 2.3.3 provide the response extrema of
a 1-DOF system subjected to the excitation considered. Since each mode behaves
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like a 1-DOF system, the information about the response extrema of the structure
can be deduced. For example, with an absolute acceleration spectrum S;(f) of a

transient applied to the base of a structure, the use of an effective mass model as
illustrated by Figure 5.2 makes it possible to easily establish the following results:

— the spectrum gives by definition the maximum acceleration of each effective
mass;

— by multiplying the maximum acceleration by the effective mass, we obtain the
maximum reaction at the base due to each mode;

— by multiplying the maximum acceleration by the effective transmissibility
between the base and an internal DOF i (relation [5.55]), we obtain the maximum
acceleration on this DOF due to each mode.

Therefore, this gives us the maximum contributions of each mode. If we now
want to obtain the maximum responses of the structure, it is necessary to combine
these results. As the maxima of the different modes do not generally have any
reason to occur at the same time, the exact recombination is not possible. This is the
consequence of the loss of information in the spectrum which retains only the
amplitude (last note in section 2.3.3). The modal maxima can only be combined
approximately, for example:

— by a direct sum, which will necessarily give an overestimation of the levels
although this is a conservative approach, it can be very pessimistic;

— by a quadratic sum, which will probably be closer to reality, but can also
underestimate the levels;

— by a mixed sum, i.e. direct for certain terms and quadratic for other terms, for
example the highest maximum combined with the square root of the quadratic sum
of the others. The quality of the result will depend on the case considered.

With the example of the 2 internal DOF in Figure 4.1 subjected to an
acceleration impulse at its base, the results on DOF 1 and 2 with a modal viscous
damping of 5% (Q = 10) are the following:

— exact results given in section 5.4.3:

|u1|max ~0.7480 Mﬂ =(.8281

Vk/m Vk/m

— direct sum:

i Uiy
Hﬂ =~0.3226+0.5268 = 0.8495 Hﬂ =~ 0.6453+0.2634 =0.9087
kim Vk/m
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— quadratic sum:

Mﬂ =0.6178 Mﬂ =0.6970

Nk/m Vk/m

In this particular case, the quadratic sum clearly underestimates the levels. With
a larger number of modes, a judicious combination of sums can provide an
acceptable approximation.

5.5. Industrial examples
As an illustration of the modal effective parameters in an industrial context, a

first example is given with the model in Figure 5.12, which represents a marine
support structure.

Figure 5.12. Marine support structure (with the permission of CTSN Toulon)

We are interested in the transmissibility of the vibrations between the motor
interface (average of 4 attachment points using a single node) and the support (rigid
junction using a single node).

The effective modal transmissibilities between two DOF in the same direction
for the first 43 modes (up to 500 Hz) are given by Table 5.3 and plotted in Figure
5.13a, in a presentation that can be generalized to any type of effective parameter.
For each mode £, of frequency f} , this table provides the value of the effective
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parameter and the cumulative sum, in absolute and relative values with respect to the
corresponding static term, here 1. The term makes it possible to appreciate the
importance of each mode in relation to the considered FRF, the sum makes it
possible to verify the convergence toward the static term. The FRF is not a driving-
point FRF here and can have positive or negative effective parameters, hence a non-
monotone convergence, contrary to what a driving-point FRF would give. The first 5
transmissibilities are positive and quite large: 20% of the static for the first one, 59%
for the second, etc. The sixth one is negative, the seventh one is positive again, etc.
They can clearly be seen again in Figure 5.13a where each jump of the sum shows
the term with its sign.

-0z 1 I 1 |
an 100 Z00 300 400 a00

a) Effective transmissibilities

L ! ' ! !

a0 100 200 300 400 500

b) Dynamic transmissibility

Figure 5.13. Effective transmissibilities and dynamic transmissibility
along Y of the model in Figure 5.12
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fk Effective parameter
(Hz) Term Sum

73.21 2.02640e-01 2.02640e-01
85.16 5.91011e-01 7.93650e-01
100.57 2.13382e-01 1.00703e+00
115.49 1.18260e-02 1.01886e+00
130.77 1.12945e-01 1.13180e+00
145.24 -1.45066e-01 9.86737e-01
162.14 2.29125e-01 1.21586e+00
176.12 -9.94615e-03 1.20592e+00
183.61 -5.35969e-02 1.15232e+00
191.52 7.24342e-03 1.15956e+00
204.39 -3.83887e-04 1.15918e+00
220.17 3.05485e-02 1.18973e+00
224.20 -1.45466e-05 1.18971e+00
228.43 3.41062e-02 1.22382e+00
237.66 -1.45901e-03 1.22236e+00
256.00 -1.29035e-02 1.20946e+00
266.28 2.48120e-03 1.21194e+00
281.37 -6.03675e-03 1.20590e+00
285.96 9.87278e-03 1.21577e+00
293.66 8.08338e-03 1.22386e+00
299.20 4.90771e-03 1.22876e+00
313.17 -7.04854e-04 1.22806e+00
325.21 -1.14711e-01 1.11335e+00
330.40 4.22691e-03 1.11758e+00
334.56 -1.68215e-02 1.10075e+00
343.32 -7.51423e-02 1.02561e+00
357.37 1.17607e-02 1.03737e+00
361.63 -2.34121e-02 1.01396e+00
373.38 2.91438e-03 1.01687e+00
375.93 3.79900e-03 1.02067e+00
386.76 2.89954e-03 1.02357e+00
401.78 1.16100e-02 1.03518e+00
412.54 -2.89955e-03 1.03228e+00
423.13 -3.77455e-03 1.02851e+00
430.96 -1.48424e-02 1.01367e+00
435.83 -3.07169e-02 9.82950e-01
443 .61 -8.05702e-03 9.74893e-01
448.63 -4.36527e-03 9.70527e-01
456.26 -1.42071e-02 9.56320e-01
480.29 -2.04802e-03 9.54272e-01
487.30 -8.61732e-03 9.45655e-01
489.43 -9.06207e-03 9.36593e-01
494.36 -5.55478e-02 8.81045e-01

Sum
Static term
Residual term

8.81045e-01
1.00000e+00
1.18955e-01

Table 5.3. Effective transmissibilities along Y of the model in Figure 5.12
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Figure 5.13b illustrates, with the same frequency scale, the dynamic
transmissibility amplitude for a global structural damping of 0.02 (amplification of
50 at resonances for all modes). This parallel clearly illustrates the considerations in
section 5.4.1. At a very low frequency, the response converges towards the static
value of 1. Then, when the frequency increases, each mode creates a peak, which
corresponds to its resonance where it is predominant if it is relatively isolated and if
its effective parameter is not too small, which is the case for the first modes. Some
anti-resonances or some local maxima are found between the peaks according to the
signs of the effective parameters, starting with anti-resonances followed by the
appearance of local minima. At higher frequencies, the variations become harder to
distinguish.

We will take the model in Figure 3.11 with its 19 modes below 150 Hz so as to
illustrate the analysis possibilities of a model according to its effective masses with
regard to its rigid junction. Table 5.4 presents the diagonal terms of the
6x6 effective mass matrix for each mode. Note that they provide nearly all the
necessary information, according to relation [5.47], allowing us to determine the
participation factors except for their sign. This table gives the following information,
for example:

— the first mode is a global lateral mode in direction Y with a directional mass of
92.8 kg, having more than a quarter of the total mass and an inertia of 41.4 m? kg,
hence a center of mass at (41.4/92.8)1/2=0.668 m along Z. Therefore, it is a global
lateral model along Y, with a small component in torsion around X and a very small
lateral component along Z;

— the second mode is also lateral in direction Y with a smaller directional mass
but a significantly higher center of mass along Z. The third mode is lateral in the
direction Z with more than half of the total mass. The fourth mode is an axial mode,
the fifth one is relatively secondary, etc.;

— the first 19 modes represent about 88% of the mass along Y and Z, but only
48% of the mass along X, hence a more important residual term along X.

These properties make it possible to clearly understand the importance of each
mode in relation to the rigid junction and to predict the form of the dynamic mass of
the model, seen from its base, just like the dynamic transmissibility of the preceding
example.

We can deduce the effective mass model according to the considerations of
section 5.3.2. We arrive at the ingredients of Table 5.5 and at the illustration of
Figure 5.14.
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Table 5.4. Effective mass model of Figure 3.11
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Mk tk/ | tk]| 0G (t.r)/(t.t)
92.80 0.0003 -1.0000 -0.0067 0.668 -0.001 0.242  -0.0035
47.90 0.0036 0.9999 -0.0124 2.002 -0.005 0.163 -0.0056

183.88 -0.1022 0.0003 -0.9948 1.188 -0.003 -0.122 0.0044
103.61  -0.9999 0.0074 0.0097 -0.001 0.004 -0.075 0.0018

7.24 -0.9840 0.0328 -0.1753 -0.478 0.058 2.692 -0.0785
28.13 0.0144 0.9999 -0.0005 1.513 -0.022 -0.052 0.0230
96.86 0.0514 -0.6944 -0.7177 -0.153 0.030 -0.040 -0.0465

101.76  -0.0284 -0.6949 0.7186 -0.144 -0.043 -0.048 0.0310

8.67 0.0973 0.9953 -0.0010 0.807 -0.080 -1.380 0.1703
34.15 0.9881 -0.0347 -0.1502 0.067 0.041 0.429  -0.0543

4.02 0.0335 0.9994 -0.0024 1.017 -0.035 -0.369 0.0209

0.35 0.9960 -0.0278 0.0852 0.007 -0.089 -0.117  -0.4185
15.47 -0.6792 -0.1956 -0.7074  -0.057 -0.022 0.061 0.0486
21.31  -0.9681 -0.0063 -0.2503 0.032 -0.003 -0.123 0.0161

0.04 -0.5213 0.6156 -0.5910 0.518 -0.312 -0.782 -0.0779

0.28 -0.0542 0.9934 -0.1007 0.112 -0.062 -0.675 -0.1322
15.46  -0.0573 -0.9982 0.0184 0.512 -0.031 -0.075 0.0232

0.06 -0.6105 0.3503 -0.7103 0.229 -0.279 -0.335 0.1856

0.12 0.8068 0.0707 0.5866 0.013 0.152 -0.037 -0.1998

165.68 0.9859 -0.0084 -0.1673 0.004 0.001 0.021 -0.0012
40.50 -0.0256 -0.9953 -0.0937 0.376 0.003 -0.130 0.0011
36.46 0.1725 -0.0973 0.9802 0.314 -0.004 -0.056 0.0026

0.67 0.0030 1.0000 0.0002 -0.685 0.001 5.748 -0.1084
1.48 -0.1002 -0.0861 -0.9912 -3.089 0.003 0.312 0.0983
1.29 0.0052 0.9995 -0.0319 -2.852 -0.002 -0.517 -0.0767

Table 5.5. Ingredients of the effective mass model of Figure 3.11
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Figure 5.14. Effective mass model of Figure 3.11





