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All these results could be extended to statically indeterminate structures but with 
a more delicate physical interpretation. In practice, effective mass models are only 
currently used for rigid junctions. 

5.4. Modal effective parameters and dynamic responses 

5.4.1. Frequency responses 

Relations [5.35] to [5.37] show that any FRF )(ωX  coming from )(ωiiG , 
)(ωijT  or )(ωjjM  is of the form: 

resk
k

k XXAX += ∑
~)()( ωω  [5.57] 

 (subscripts of the DOF omitted for the sake of convenience, excluding the statically 
indeterminate term from [5.37]) with: 

� )(ωkA  dynamic amplification )(ωkH  or )(ωkT ; 

� kX~  modal effective parameter kG~ , kT~  or kM~ ; 

� resX  residual parameter resG , resT  or resM . 

Other types of FRF are deduced by multiplying or dividing by iω. Form [5.57] is 
therefore general. Graphically, its amplitude using logarithmic scales is illustrated 
schematically in Figure 5.7. The profile is governed by the following rules: 

� at a very low frequency, we converge towards the static value equal to the sum 
of the effective parameters of the retained modes, increased by the residual 
parameter representing the truncated modes and possibly the junction itself 
(relations [5.38] to [5.40]). Exceptions are the flexibilities of structures with rigid-
body modes and the masses of statically indeterminate structures which have a 
contribution in 2/1 ω ; 

� when the frequency increases, each mode creates a peak corresponding to its 
resonance which is predominant if it is relatively isolated and if its effective 
parameter is not too small. Otherwise, it can combine with the neighboring modes 
and perhaps disappear visually from the curve; 
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� between two peaks, i.e. a minimum occurs between two consecutive modes 
which are not too close and with similar importance. This minimum will take one of 
the following two forms according to the corresponding phases: 

- if the effective parameters of the two modes are of the same sign, the two 
contributions are antagonist and result in a very small amplitude, hence an �anti-
peak� corresponding to an anti-resonance, the sharpness of which is similar to that 
of the neighboring peaks. For a sine motion at this frequency, this is a vibrational 
node. With reference to the last comment in section 5.2.1, any driving-point FRF 
should present only anti-resonances, 

- if the effective parameters of the two modes are of an opposite sign, the two 
contributions add to each other and give a significant amplitude, hence a local 
minimum or �trough�. There shouldn't be any in a driving-point FRF. Conversely, a 
transfer FRF may have both anti-resonances and local minima depending on the 
signs of the corresponding effective parameters.  

 

 

Figure 5.7. FRF profile G(ω), T(ω) or M(ω) 
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The FRF profile can vary considerably according to the value of the effective 
parameters, damping and the proximity of the modes. Generally, the peaks are rather 
well distinguished at low frequencies where the modal density is low, then become 
progressively coupled towards the high frequencies. In an experimental context, 
measurement noise may perturb the profile to a certain degree and mask certain 
aspects, especially the anti-resonances. 

  
Note that for a given structure, the peaks of all FRF will be located at the same 

frequencies, those of the normal modes, while the frequencies of the anti-resonances 
will depend on the FRF considered. 

 
As an illustration several different possible situations with the simple cases in 

Figures 4.1 and 4.3, we obtain the following plots: 

� Figures 5.8 relative to the 2 internal DOF system of Figure 4.1 and to the 
results of [4.9] and [5.11]: 

- Figure 5.8a:     )()5/2()()5/3()( 2111 ωωω HkHkG +=  

- Figure 5.8b:     )()5/1()()5/6()( 2112 ωωω HkHkG −+=  

- Figure 5.8c:     )()10/1()()5/12()( 2122 ωωω HkHkG +=  

- Figure 5.8d:     )()5/2()()5/3()( 2110 ωωω TTT +=  

- Figure 5.8e:     )()5/1()()5/6()( 2120 ωωω TTT −+=  

- Figure 5.8f:     )()5/()()5/9()( 2100 ωωω TmTmM +=  

� Figure 5.9 relative to the 3-DOF free system in Figure 4.3 and to the results of 
[4.16] and [5.12]: 

- Figure 5.9a:     )()18/1()()2/1()3/(1)( 32
2

11 ωωωω HkHkmG ++−=  

- Figure 5.9b:     )()18/1()()2/1()3/(1)( 32
2

13 ωωωω HkHkmG +−+−=  
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Figure 5.8. FRF for the 2 internal DOF system in Figure 4.1 
(m = k = 1, ζk = 2% ⇔ Qk = 25) 
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Figure 5.9. FRF for the 3-DOF free system in Figure 4.3 
(m = k = 1, ζk = 2% ⇔ Qk = 25) 

5.4.2. Random responses 

In the case of a random excitation x defined by its PSD )(ωxxS  (see section 
1.2.3.4), the response y defined by its PSD )(ωyyS  is deduced from this using 

equation [1.39]. Starting from relation [5.57], we can thus write: 

)(~)()(
2

,, ωωω xxresyxkyx
k

kyy SXXAS += ∑  [5.58] 

The case of the 1-DOF was already discussed in section 2.2.5 in order to obtain 
the response PSD and the rms values. Since each mode behaves like a 1-DOF 
system, it is easy to deduce the following results for the rms values of the responses. 

 
With the following hypotheses: 

� the excitation PSD )(ωxxS , renamed )( fWx  as in section 2.2.5 for the 
practical applications, varies slowly in the vicinity of each natural frequency, so that 
the value )( kx fW  is used for the contribution of each mode k; 

� the natural frequencies kf  are well separated, so that it is possible to replace 

the integral of the sum with the sum of the integrals, as illustrated in Figure 5.10; 
then, the mean squares are given by the relation: 

22
,

2
,

2 )(~
2

xXfWXQfy resyxkxkyx
k

kk +⎟
⎠
⎞

⎜
⎝
⎛≈ ∑

π  [5.59] 
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Each mode contributes to the mean square by the product of the term 
kk Qf)2/(π , resulting from the integration of its dynamic amplification, with the 

square of the implied effective parameter and the excitation PSD at its natural 
frequency. As for the residual term, its contribution is the product of its square by 
the excitation mean square. Relation [5.59] is easy to interpret more particularly in 
the light of the scheme in Figure 5.2a. 

 

Figure 5.10. Integration of the response PSD in order to find the rms values  

The preceding results are valid only for one excitation and one response. They 
may be extrapolated to several excitations and responses based on expression [1.42] 
replacing [1.39]. 

 
With the example of the 2 internal DOF system in Figure 4.1 subjected to a 

white noise in acceleration 0uW !!  at its base, the mean square of the response on DOF 
2 is given by (with 10=kQ  and the results [4.9] and [5.11]) : 

0

22

0
2

2 )14.008.2(2
5
1

3
1

5
6

2
10

2 uu W
m
kW

m
ku !!!!!! +≈⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛≈

π
π  [5.60] 

(log) ω 

(log) ⏐X⏐ 



Modal Effective Parameters     159 

5.4.3. Time responses  

For a FRF X(ω) of form [5.57], the response y(t) to an excitation x(t) is given by 
the convolution integral [1.30] with the unit impulse response given by the inverse 
Fourier transform FT�1 of X(ω). By writing that the transform of the sum is equal to 
the sum of the transforms, we obtain: 

( )( )1
,( ) ( ) FT ( ) d ( )

t

k yx k res
k

y t x A X y tτ ω τ−

−∞
= +∑ ∫ &

 [5.61] 

we can see that each mode contributes to the response by a product, that of the 
effective parameter with the convolution of the excitation and the unit impulse 
response )(thk  or )(ttk of relations [2.60] or [2.61]. With regard to the residual 

term, it provides a residual term for the response in a similar way. 
 

Using the example of the 2 internal DOF in Figure 4.1 subjected to an 
acceleration impulse at its base, the time responses in Figure 5.11 are obtained: 

� Figure 5.11a: response on DOF 1: )()5/2()()5/3()( 211 tttttu +=!! ; 

� Figure 5.11b: response on DOF 2: )()5/1()()5/6()( 212 tttttu −+=!! . 
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Figure 5.11. Impulse response of the 2 internal DOF system in Figure 4.1 
(m = k = 1, ζk = 2% ⇔ Qk = 25) 

5.4.4. Time response extrema 

The response spectra introduced in section 2.3.3 provide the response extrema of 
a 1-DOF system subjected to the excitation considered. Since each mode behaves 
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like a 1-DOF system, the information about the response extrema of the structure 
can be deduced. For example, with an absolute acceleration spectrum )( fSu!!  of a 
transient applied to the base of a structure, the use of an effective mass model as 
illustrated by Figure 5.2 makes it possible to easily establish the following results: 

� the spectrum gives by definition the maximum acceleration of each effective 
mass; 

� by multiplying the maximum acceleration by the effective mass, we obtain the 
maximum reaction at the base due to each mode; 

� by multiplying the maximum acceleration by the effective transmissibility 
between the base and an internal DOF i (relation [5.55]), we obtain the maximum 
acceleration on this DOF due to each mode. 

 
Therefore, this gives us the maximum contributions of each mode. If we now 

want to obtain the maximum responses of the structure, it is necessary to combine 
these results. As the maxima of the different modes do not generally have any 
reason to occur at the same time, the exact recombination is not possible. This is the 
consequence of the loss of information in the spectrum which retains only the 
amplitude (last note in section 2.3.3). The modal maxima can only be combined 
approximately, for example: 

� by a direct sum, which will necessarily give an overestimation of the levels 
although this is a conservative approach, it can be very pessimistic; 

� by a quadratic sum, which will probably be closer to reality, but can also 
underestimate the levels; 

� by a mixed sum, i.e. direct for certain terms and quadratic for other terms, for 
example the highest maximum combined with the square root of the quadratic sum 
of the others. The quality of the result will depend on the case considered. 

 
With the example of the 2 internal DOF in Figure 4.1 subjected to an 

acceleration impulse at its base, the results on DOF 1 and 2 with a modal viscous 
damping of 5% (Q = 10) are the following: 

� exact results given in section 5.4.3: 

8281.0
/

7480.0
/

max2max1
≈≈

mk

u

mk

u !!!!
 

� direct sum: 

9087.02634.06453.0
/

8495.05268.03226.0
/

max2max1
=+≈=+≈

mk

u

mk

u !!!!
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� quadratic sum: 

6970.0
/

6178.0
/

max2max1
≈≈

mk

u

mk

u !!!!
 

In this particular case, the quadratic sum clearly underestimates the levels. With 
a larger number of modes, a judicious combination of sums can provide an 
acceptable approximation. 

5.5. Industrial examples  

As an illustration of the modal effective parameters in an industrial context, a 
first example is given with the model in Figure 5.12, which represents a marine 
support structure. 

 

Figure 5.12. Marine support structure (with the permission of CTSN Toulon) 

We are interested in the transmissibility of the vibrations between the motor 
interface (average of 4 attachment points using a single node) and the support (rigid 
junction using a single node). 

 
The effective modal transmissibilities between two DOF in the same direction 

for the first 43 modes (up to 500 Hz) are given by Table 5.3 and plotted in Figure 
5.13a, in a presentation that can be generalized to any type of effective parameter. 
For each mode k, of frequency kf , this table provides the value of the effective 
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parameter and the cumulative sum, in absolute and relative values with respect to the 
corresponding static term, here 1. The term makes it possible to appreciate the 
importance of each mode in relation to the considered FRF, the sum makes it 
possible to verify the convergence toward the static term. The FRF is not a driving-
point FRF here and can have positive or negative effective parameters, hence a non-
monotone convergence, contrary to what a driving-point FRF would give. The first 5 
transmissibilities are positive and quite large: 20% of the static for the first one, 59% 
for the second, etc. The sixth one is negative, the seventh one is positive again, etc. 
They can clearly be seen again in Figure 5.13a where each jump of the sum shows 
the term with its sign. 
 

  
a) Effective transmissibilities 

  

b) Dynamic transmissibility 

Figure 5.13. Effective transmissibilities and dynamic transmissibility  
along Y of the model in Figure 5.12 
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   k      fk       Effective parameter     effective/static parameter 
         (Hz)       Term         Sum             Term         Sum 
--------------------------------------------------------------------- 
   1     73.21   2.02640e-01   2.02640e-01      0.20264     0.20264 
   2     85.16   5.91011e-01   7.93650e-01      0.59101     0.79365 
   3    100.57   2.13382e-01   1.00703e+00      0.21338     1.00703 
   4    115.49   1.18260e-02   1.01886e+00      0.01183     1.01886 
   5    130.77   1.12945e-01   1.13180e+00      0.11294     1.13180 
   6    145.24  -1.45066e-01   9.86737e-01     -0.14507     0.98674 
   7    162.14   2.29125e-01   1.21586e+00      0.22913     1.21586 
   8    176.12  -9.94615e-03   1.20592e+00     -0.00995     1.20592 
   9    183.61  -5.35969e-02   1.15232e+00     -0.05360     1.15232 
  10    191.52   7.24342e-03   1.15956e+00      0.00724     1.15956 
  11    204.39  -3.83887e-04   1.15918e+00     -0.00038     1.15918 
  12    220.17   3.05485e-02   1.18973e+00      0.03055     1.18973 
  13    224.20  -1.45466e-05   1.18971e+00     -0.00001     1.18971 
  14    228.43   3.41062e-02   1.22382e+00      0.03411     1.22382 
  15    237.66  -1.45901e-03   1.22236e+00     -0.00146     1.22236 
  16    256.00  -1.29035e-02   1.20946e+00     -0.01290     1.20946 
  17    266.28   2.48120e-03   1.21194e+00      0.00248     1.21194 
  18    281.37  -6.03675e-03   1.20590e+00     -0.00604     1.20590 
  19    285.96   9.87278e-03   1.21577e+00      0.00987     1.21577 
  20    293.66   8.08338e-03   1.22386e+00      0.00808     1.22386 
  21    299.20   4.90771e-03   1.22876e+00      0.00491     1.22876 
  22    313.17  -7.04854e-04   1.22806e+00     -0.00070     1.22806 
  23    325.21  -1.14711e-01   1.11335e+00     -0.11471     1.11335 
  24    330.40   4.22691e-03   1.11758e+00      0.00423     1.11758 
  25    334.56  -1.68215e-02   1.10075e+00     -0.01682     1.10075 
  26    343.32  -7.51423e-02   1.02561e+00     -0.07514     1.02561 
  27    357.37   1.17607e-02   1.03737e+00      0.01176     1.03737 
  28    361.63  -2.34121e-02   1.01396e+00     -0.02341     1.01396 
  29    373.38   2.91438e-03   1.01687e+00      0.00291     1.01687 
  30    375.93   3.79900e-03   1.02067e+00      0.00380     1.02067 
  31    386.76   2.89954e-03   1.02357e+00      0.00290     1.02357 
  32    401.78   1.16100e-02   1.03518e+00      0.01161     1.03518 
  33    412.54  -2.89955e-03   1.03228e+00     -0.00290     1.03228 
  34    423.13  -3.77455e-03   1.02851e+00     -0.00377     1.02851 
  35    430.96  -1.48424e-02   1.01367e+00     -0.01484     1.01367 
  36    435.83  -3.07169e-02   9.82950e-01     -0.03072     0.98295 
  37    443.61  -8.05702e-03   9.74893e-01     -0.00806     0.97489 
  38    448.63  -4.36527e-03   9.70527e-01     -0.00437     0.97053 
  39    456.26  -1.42071e-02   9.56320e-01     -0.01421     0.95632 
  40    480.29  -2.04802e-03   9.54272e-01     -0.00205     0.95427 
  41    487.30  -8.61732e-03   9.45655e-01     -0.00862     0.94565 
  42    489.43  -9.06207e-03   9.36593e-01     -0.00906     0.93659 
  43    494.36  -5.55478e-02   8.81045e-01     -0.05555     0.88104 
                               -----------                  ------- 
              Sum            :   8.81045e-01                0.88104 
              Static term    : 1.00000e+00                  1.00000 
              Residual term  : 1.18955e-01                  0.11896 

Table 5.3. Effective transmissibilities along Y of the model in Figure 5.12 
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Figure 5.13b illustrates, with the same frequency scale, the dynamic 
transmissibility amplitude for a global structural damping of 0.02 (amplification of 
50 at resonances for all modes). This parallel clearly illustrates the considerations in 
section 5.4.1. At a very low frequency, the response converges towards the static 
value of 1. Then, when the frequency increases, each mode creates a peak, which 
corresponds to its resonance where it is predominant if it is relatively isolated and if 
its effective parameter is not too small, which is the case for the first modes. Some 
anti-resonances or some local maxima are found between the peaks according to the 
signs of the effective parameters, starting with anti-resonances followed by the 
appearance of local minima. At higher frequencies, the variations become harder to 
distinguish. 

 
We will take the model in Figure 3.11 with its 19 modes below 150 Hz so as to 

illustrate the analysis possibilities of a model according to its effective masses with 
regard to its rigid junction. Table 5.4 presents the diagonal terms of the  
6×6 effective mass matrix for each mode. Note that they provide nearly all the 
necessary information, according to relation [5.47], allowing us to determine the 
participation factors except for their sign. This table gives the following information, 
for example: 

� the first mode is a global lateral mode in direction Y with a directional mass of 
92.8 kg, having more than a quarter of the total mass and an inertia of 41.4 m2.kg, 
hence a center of mass at (41.4/92.8)1/2 = 0.668 m along Z. Therefore, it is a global 
lateral model along Y, with a small component in torsion around X and a very small 
lateral component along Z; 

� the second mode is also lateral in direction Y with a smaller directional mass 
but a significantly higher center of mass along Z. The third mode is lateral in the 
direction Z with more than half of the total mass. The fourth mode is an axial mode, 
the fifth one is relatively secondary, etc.; 

� the first 19 modes represent about 88% of the mass along Y and Z, but only 
48% of the mass along X, hence a more important residual term along X. 

 
These properties make it possible to clearly understand the importance of each 

mode in relation to the rigid junction and to predict the form of the dynamic mass of 
the model, seen from its base, just like the dynamic transmissibility of the preceding 
example. 

 
We can deduce the effective mass model according to the considerations of 

section 5.3.2. We arrive at the ingredients of Table 5.5 and at the illustration of 
Figure 5.14. 
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  k      fk         Mx     My      Mz      Ix      Iy      Iz 

--------------------------------------------------------------- 

  1     41.36     0.000  92.797   0.004   5.426   0.006  41.380 

  2     45.88     0.001  47.891   0.007   1.267   0.019 192.044 

  3     52.16     1.920   0.000 181.962   0.001 262.336   0.003 

  4     82.19   103.594   0.006   0.010   0.000   0.578   0.001 

  5     87.25     7.009   0.008   0.222   0.003  54.156   0.022 

  6     94.49     0.006  28.125   0.000   0.076   0.015  64.449 

  7    111.48     0.256  46.709  49.894   0.256   0.610   1.841 

  8    113.11     0.082  49.132  52.544   0.432   0.711   1.498 

  9    114.24     0.082   8.592   0.000  16.756   0.011   5.703 

 10    114.65    33.338   0.041   0.770   0.069   6.488   0.042 

 11    123.26     0.005   4.015   0.000   0.550   0.000   4.159 

 12    128.01     0.345   0.000   0.003   0.064   0.004   0.001 

 13    128.66     7.134   0.592   7.741   0.000   0.130   0.022 

 14    138.10    19.973   0.001   1.335   0.005   0.341   0.001 

 15    142.86     0.010   0.014   0.013   0.019   0.017   0.002 

 16    145.25     0.001   0.281   0.003   0.133   0.002   0.004 

 17    145.31     0.051  15.402   0.005   0.091   0.012   4.063 

 18    146.67     0.022   0.007   0.029   0.002   0.011   0.003 

 19    147.42     0.080   0.001   0.042   0.001   0.000   0.007 

--------------------------------------------------------------- 

 Static         336.063 336.063 336.063  48.414 343.560 331.745 

--------------------------------------------------------------- 

 residual       162.156  42.449  41.478  23.260  18.111  16.500 

Table 5.4. Effective mass model of Figure 3.11 
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 k     Mk              tk/|tk|                   OG        (t.r)/(t.t) 

 1    92.80    0.0003 -1.0000 -0.0067    0.668 -0.001  0.242   -0.0035 

 2    47.90    0.0036  0.9999 -0.0124    2.002 -0.005  0.163   -0.0056 

 3   183.88   -0.1022  0.0003 -0.9948    1.188 -0.003 -0.122    0.0044 

 4   103.61   -0.9999  0.0074  0.0097   -0.001  0.004 -0.075    0.0018 

 5     7.24   -0.9840  0.0328 -0.1753   -0.478  0.058  2.692   -0.0785 

 6    28.13    0.0144  0.9999 -0.0005    1.513 -0.022 -0.052    0.0230 

 7    96.86    0.0514 -0.6944 -0.7177   -0.153  0.030 -0.040   -0.0465 

 8   101.76   -0.0284 -0.6949  0.7186   -0.144 -0.043 -0.048    0.0310 

 9     8.67    0.0973  0.9953 -0.0010    0.807 -0.080 -1.380    0.1703 

10    34.15    0.9881 -0.0347 -0.1502    0.067  0.041  0.429   -0.0543 

11     4.02    0.0335  0.9994 -0.0024    1.017 -0.035 -0.369    0.0209 

12     0.35    0.9960 -0.0278  0.0852    0.007 -0.089 -0.117   -0.4185 

13    15.47   -0.6792 -0.1956 -0.7074   -0.057 -0.022  0.061    0.0486 

14    21.31   -0.9681 -0.0063 -0.2503    0.032 -0.003 -0.123    0.0161 

15     0.04   -0.5213  0.6156 -0.5910    0.518 -0.312 -0.782   -0.0779 

16     0.28   -0.0542  0.9934 -0.1007    0.112 -0.062 -0.675   -0.1322 

17    15.46   -0.0573 -0.9982  0.0184    0.512 -0.031 -0.075    0.0232 

18     0.06   -0.6105  0.3503 -0.7103    0.229 -0.279 -0.335    0.1856 

19     0.12    0.8068  0.0707  0.5866    0.013  0.152 -0.037   -0.1998 

 --------------------------------------------------------------------- 

 r1  165.68    0.9859 -0.0084 -0.1673    0.004  0.001  0.021   -0.0012 

 r2   40.50   -0.0256 -0.9953 -0.0937    0.376  0.003 -0.130    0.0011 

 r3   36.46    0.1725 -0.0973  0.9802    0.314 -0.004 -0.056    0.0026 

 r4    0.67    0.0030  1.0000  0.0002   -0.685  0.001  5.748   -0.1084 

 r5    1.48   -0.1002 -0.0861 -0.9912   -3.089  0.003  0.312    0.0983 

 r6    1.29    0.0052  0.9995 -0.0319   -2.852 -0.002 -0.517   -0.0767 

Table 5.5. Ingredients of the effective mass model of Figure 3.11 
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Figure 5.14. Effective mass model of Figure 3.11 
  




