
Introduction

Context

Although formal program analysis techniques (see works by Hoare [HOA 69]
and Dijkstra [DIJ 75]) are quite old, the implementation of formal methods goes
back to the 1980s. These techniques enable us to analyze the behavior of a software
application described in programming language. Program correction (good behavior,
program stop, etc.) is then demonstrated by program proof based on the calculation
of the weakest precondition [DIJ 76].

It was not until the end of the 1990s that formal methods (Z [SPI 89], VDM
[JON 90]) and the B method [ABR 96, ARA 97] were used in industrial applications
and could be applied in an industrial context. One of the obstacles to their use was
how they could be implemented in an industrial application (large application, time
and cost constraints, etc.). They could only be implemented using tools that were
mature enough and had sufficient performance.

It is worth noting that in the context of critical applications, at least two formal
methods have a recognized and commonly used design environment that covers part
of the realization of the code specification process while integrating one or several
verification processes, that is to say the B method [ABR 96] and Lustre language
[HAL 91, ARA 97] and its graphic version, called SCADE® [DOR 08]. The B
method and SCADE® environment are associated with proven industrial tools. For
example, AtelierB and Btoolkit, commercially produced by Clearsy and Bcore,
respectively, are tools that completely cover the B method development cycle
(specification, refinement, code generation and proof).

Introduction written by Jean-Louis BOULANGER.



xii Static Analysis of Software

Formal methods are based on different formal verification techniques, such as
proof, model checking [BAI 08] and/or simulation.

The use of formal methods, though in full expansion, is still marginal compared
to the number of code lines. Indeed, there are currently many more lines of Ada
[ANS 83], C and C++ code that have been manually produced via a formal process
only. For this reason other formal techniques have been implemented to verify the
behavior of a software application written in a programming language such as C or
Ada. The main technique, called abstract program interpretation [COU 00], enables
us to evaluate the set of behaviors of a software application using static analysis. In
the past few years, this type of technique has given rise to several tools, such as
Polyspace®1, Caveat2, Absint3, Frama-C4 and/or Astrée5.

The efficiency of these static program analysis techniques has greatly progressed
with the increase in the power of office equipment. It is worth noting that these
techniques generally require the integration of complementary information into the
manual code, such as pre-conditions, invariants and/or post-conditions.

SPARK Ada6 is an approach where Ada has been extended [BAR 03] in order to
introduce additional elements (pre, post and invariant) and a sequence of adapted
tools has been defined.

Objective

In [BOW 95] and [ARA 97], we have the first feedback from industrialists
regarding formal techniques, and in particular feedback on the B method, Lustre
language [HAL 91, ARA 97] and SAO+ (SCADE®’s predecessor). Other works,
such as [MON 00, MON 02, HAD 06] provide an overview of formal methods from
a scientific point of view.

With regards to the presentation of context and the state of the literature, our
objective is to present concrete examples of the industrial uses of formal techniques.
By formal techniques, we mean different approaches based on mathematics, which
enable us to demonstrate that a software application respects a certain number of
properties.

1 See www.mathworks.com/ products/polyspace/.
2 See www-list.cea.fr/labos/fr/LSL/caveat/ index.html.
3 See web www.absint.com.
4 To find out more, see web frama-c.com.
5 See www.astree.ens.fr.
6 See www.altran-praxis.com/spark.aspx contains additional information about SPARK Ada.



Introduction xiii

It is worth noting that the standard use of formal techniques consists of running
specification and/or design models. Increasingly, however, formal techniques are
seen as a way of carrying out verification (static code analysis, proof that the
property is respected, proper management of floater calculation, etc.).

This book is part of a series that covers four different aspects:

– this first volume concerns industrial examples of the implementation of formal
techniques based on static analysis, such as abstract interpretation: there are
examples of the use of Astrée (Chapter 2), Caveat (Chapter 2), CodePeer
(Chapter 5), Frama-C (Chapters 2 and 6) and Polsypace® (Chapters 3 and 4) tools;

– the second volume gives industrial examples of B method implementation
[ABR 96];

– the third volume is dedicated to the presentation of different modeling
techniques, such as SCADE® 7 [DOR 08], ControlBuild8 and MaTeLo9.

– the fourth volume is dedicated to the presentation of the railway sector’s
application of formal technics.

In conclusion to this introduction, I would like to thank all the industrialists who
have given their own time to write these chapters, each one being even more
interesting than the next.

Bibliography

[ABR 96] ABRIAL Jr., The B Book – Assigning Programs to Meanings, Cambridge University
Press, Cambridge, August 1996.

[ANS 83] ANSI, ANSI/MIL-STD-1815A-1983 Standard, ADA Programming Language,
ANSI, 1983.

[BAI 08] BAIERC., KATOEN J.P., Principles of Model Checking, MIT Press, London, 2008.

[BAR 03] BARNES J., High Integrity Software: The SPARK Approach to Safety and Security,
Addison-Wesley, London, 2003.

[BOW 95] BOWEN J.P., HINCHEY M.G., Applications of Formal Methods, Prentice Hall,
Upper Saddle River, 1995.

7 SCADE® is distributed by Esterel-Technologies, see www.esterel-technologies.com.
8 To find out more about the ControlBuild tool, see www.geensoft.com/en/article/
controlbuild.
9 To find out more about MaTeLo, see www.all4tec.net/index.php/All4tec/matelo-
product.html.



xiv Static Analysis of Software

[COU 00] COUSOT P., “Interprétation abstraite ”, Technique et Science Informatique, vol. 19,
p. 155-164, no. 1-2-3, Hermès, Paris, 2000.

[DIJ 75] DIJKSTRA E.W., “Guarded commands, nondeterminacy and formal derivation of
programs”, Communications of the ACM, vol.18, no. 8, pp. 453-457, 1975.

[DIJ 76] DIJKSTRA E.W., A Discipline of Programming, Prentice Hall, Engelwood Cliffs,
1976.

[DOR 08] DORMOY F.X., “Scade 6 a model based solution for safety critical software
development”, Embedded Real-Time Systems Conference, Toulouse, France, 2008.

[HAD 06] HADDAD S. (ed.), KORDON F., PETRUCCI L., Méthodes Formelles pour les Systèmes
Répartis et Coopératifs, Hermès Lavoisier, Paris, 2006.

[HAL 91] HALBWACHS N., CASPI P., RAYMOND P., PILAUD D., “The synchronous dataflow
programming language Lustre”, Proceedings of the IEEE, no. 9, vol. 79, pp. 1305-1320,
1991.

[HOA 69] HOARE CAR, “An axiomatic basis for computer programming”, Communications
of the ACM, vol. 12, no. 10, pp. 576-583, 1969.

[JON 90] JONES C.B., Systematic Software Development using VDM, (2nd edition), Prentice
Hall, Engelwood Cliffs, 1990.

[MON 00] MONIN J.F., Introduction aux Méthodes Formelles, Hermès, Paris, 2000.

[MON 02] MONIN J.F., Understanding Formal Methods, Springer Verlag, Heidelberg, 2002.

[OFT 97] OBSERVATOIRE FRANÇAIS des TECHNIQUES AVANCEES (OFTA), Applications des
Méthodes Formelles au Logiciel, vol. 20, Arago, Masson, Paris, June 1997.

[SPI 89] SPIVEY J.M., The Z Notation – a Reference Manual, Prentice Hall, Engelwood Cliffs,
1989.




