Table of Contents

Introduction x	v
Chapter 1. Controllability of Geotechnical Tests and their Relationship	1
Roberto NOVA	1
1.1. Introduction.	1
1.2. Load control	2
1.3. Displacement control and mixed control.	5
1.4. Conditions for loss of controllability under mixed control	8
1.5. Loss of controllability example	9
1.6. Linear combinations of stresses and strains	1
1.7. Instability line and spontaneous generation of pore water pressure 1	3
1.8. Other cases of volumetric instability	7
1.9. Drained shear bands	0
1.10. Undrained shear bands	3
1.11. Total stress analysis: effectiveness of the undrained strength concept	
in light of the loss of controllability notion	6
1.12. Compaction bands	8
1.13. Conclusions	1
1.14. Bibliography	1
Chapter 2. Multiscale Analysis of Failure 3. François NICOT and Félix DARVE 3.	5
2.1. Introduction	5
2.1.1. Physical meaning of the notion of instability. 3. 2.1.2. Hill's material instability 3.	5

vi Micromechanics of Failure in Granular Geomaterials

2.1.3. Loss of controllability and loss of sustainability	38
2.2. The notion of sustainability	40
2.2.1. Macroscopic point of view	40
2.2.2. Loss of sustainability criterion	41
2.3. The fundamental micro-macro relation	46
2.3.1. The contact scale	48
2.3.2. The granular assembly scale	50
2.4. Micromechanical analysis of the vanishing of second-order work	58
2.5. Conclusion	61
2.6. Bibliography	62
Chapter 3. Continuous and Discrete Modeling of Failure in Geomaterials Luc SIBILLE, Florent PRUNIER, François NICOT and Félix DARVE	65
3.1. Definition of failure in geomechanics	65
3.2. Material instability: definition and criterion.	67
3.3. Continuous analysis of stability with phenomenological constitutive	
relations.	68
3.3.1. Undrained loading paths on loose sand	68
3.3.2. Axisymmetric loading paths	70
3.3.3. Plane strain conditions	74
3.4. Modeling instability with a discrete numerical model.	80
3.4.1. Proportional strain loading paths in axisymmetric conditions	83
3.4.2. Unstable stress directions	87
3.5. Application to the case of loading paths at constant stress deviator	90
3.5.1. Phenomenological approach	90
3.5.2. Discrete numerical modeling	96
3.6. Conclusion	100
3.7. Bibliography	101
Chapter 4. Failure analysis using an Elastoplastic Micromechanical	
Model	105
Richard WAN, PeiJun GUO, Mauricio PINHEIRO and Qian LI	
4.1 Introduction	105
4.2 Experimental results revealing the microstructure role	106
4.3 Micromechanical analysis of dilatancy	108
4 3 1 Micro-macro relations	109
4.3.2. Conservation of energy at both macro and micro scales	111
4.3.3. Stress dilatancy relationship from the energy equation	112
4.3.3.1. Case of regular assembly of particles.	113
4.3.3.2. Case of random particle packing	115
4.4. Micromechanical elastoplastic model	119
4 4 1 Yield surfaces	119

Table of Contents vii

4.4.2. Plastic flow rate.	120
4.4.3. Hardening laws	122
4.4.4. Evolution of fabric	123
4.4.5. Incremental relationship	123
4.5. Simulation results highlighting the effect of fabric	124
4.5.1. Non-uniqueness of characteristic dilatancy curves	124
4.5.2. Undrained triaxial compression test responses.	127
4.6. Modeling cyclic phenomena.	130
4.6.1. Dilatancy in both loading and unloading regimes	130
4.6.2. Loading surface and kinematic hardening	131
4.6.3. Comments on the plastic potential and the plastic modulus	133
4.7. Evaluation of an elastoplastic model in cyclic loading	134
4.7.1. Effect of fabric on the cyclic response of sand in drained	
conditions	134
4.8. Conclusion	136
4.9. Bibliography	137
Chapter 5. Damage of Geomaterials: Induced Anisotropy and Coupling	
with Plasticity.	141
Djimédo KONDO, Qizhi ZHU and Vincent MONCHIET	
5.1 Introduction	141
5.2 Anisotronic elastic damage model with unilateral effects	143
5.2.1 Homogenization and application to elastic microcracked media	143
5.2.1.1 Micromechanics of media with random	1.0
microstructure	143
5.2.1.2. Application to microcracked media	144
5.2.1.3. Mircrocracked closure effects and unilateral damage	145
5.2.2. Impact of microcracking on the directional moduli $E(n)$.	146
5.2.3 Damage criterion and evolution law	148
5.2.4 Nonlocal micromechanics-based damage model	148
5.2.5 Application of the model and comparison to data	149
5 2 5 1 Simulation of uniaxial tensile tests	149
5 2 5 2 Predictions of anisotropic micro-macro damage model	,
for Willam's test	151
5 2 5 3 Numerical analysis of Hassanzadeh's direct tension test	153
5.3 A new model for ductile microcracked materials	154
5.3.1 Introductory comments	154
5.3.2. Limit analysis-based approach to the macroscopic yield function	156
5.3.2.1. Studied cell of porous materials in the case of oblate voids	156
5.3.2.2. The Eshelby-like trial velocity field	156
5.3.3. Determination of the macroscopic vield surface	157
5.3.3.1. Discussion of the boundary conditions	157
	101

viii Micromechanics of Failure in Granular Geomaterials

5.3.3.2. Principle of the determination of the yield function	158
5.3.3.3. closed form expression for the macroscopic yield function	158
5.3.4. The case of penny-shaped cracks	160
5.4. Conclusions.	161
5.5. Appendix	163
5.6. Bibliography	163
Chapter 6. Continuous Damage Modeling and Discrete Approaches	
to Failure	167
Gilles PIJAUDIER-CABOT	
6.1 Introduction	167
6.2 Damage in disordered lattices	168
6.2.1. Global response of lattices	170
6.2.2. Invertigance and least distribution of foreas in the lattice	170
6.2.2. Invariance and local distribution of forces in the fattice	174
6.2.3. Correlations during the failure process	1/4
6.3. Continuum damage	176
6.3.1. General setting	177
6.3.2. Explicit formulation	178
6.4. Discrete modeling of crack propagation	182
6.5. Localization limiters	187
6.5.1. Integral model	187
6.5.2. Gradient damage model	187
6.5.3. Failure and structural size effect	188
6.6. Conclusions	192
67 Acknowledgements	193
6.8 Bibliography	193
	175
Chapter 7. Effect of Particle Breakage on the Behavior of Granular	
Materials.	197
Bernard CAMBOU, Cécile NOUGUIER-LEHON and Eric VINCENS	
7.1 Introduction	107
7.1. Introduction.	19/
7.2. Experimental results concerning the breakage of a single grain	198
7.2.1. Different kinds of particle breakage	198
7.2.2. Determining the block breaking strength	198
7.2.3. Parameters influencing grain breakage	199
7.2.3.1. Nature and state of the rock	200
7.2.3.2. Size and shape of grains	200
7.2.3.3. Effect of loading	201
7.3. Experimental results on breakage within a REV	201
7.3.1. Definition of the amount of breakage	201
7.3.2. Parameters causing breakage	204
7.3.2.1. Grading curve	204

7.3.2.2. Initial density	205
7 3 2 3 State of stress and loading nath	205
7 3 3 Consequences for global behavior	207
7 3 3 1 Compressibility increase	207
7 3 3 2 Dilatancy decrease	209
7.3.3.3 Internal friction angle decrease	210
7.4 Phenomenological models of the representative elementary volume	210
taking into account particle crushing	211
7.4.1 Micromechanical approach of particle breakage in grapular	211
materials	211
7.4.1.1 Dertiale breakage due to the applied stress electic yielding	211
7.4.1.2. Hudrie environment influence	211
7.4.2. Plyance environment influence	212
7.4.2. Phenomenological model of oedometric loading	213
7.4.2.1. Analysis considering only the applied stress	213
7.4.2.2. Taking into account hydric environment.	215
7.4.3. Complete phenomenological modeling	217
7.4.3.1. Elastoplastic modeling using one mechanism of plasticity only	217
7.4.3.2. Elastic-plastic modeling considering several plastic	
mechanisms.	220
7.5. Distinct numerical modeling of granular materials allowing particle	
breakage to be considered	222
7.5.1. Modeling the breakage of a single particle	222
7.5.2. Distinct numerical modeling using a simplified breakage	
local mechanism	223
7.5.2.1. Difficulties linked to the use of a 2D numerical model	223
7.5.2.2. Results obtained from simulations performed on	
representative elementary volumes	225
7.5.2.3. Model of work in actual conditions.	226
7.5.3. Numerical model of ageing effects	227
7.5.3.1. Local numerical model	227
7.5.3.2. Numerical model	229
7.5.3.3. Some results	229
7.6. Conclusion	231
7.7. Bibliography	231
···· =8	
Chapter 8. Mechanical Behavior of Granular Materials with Soft Grains	235
Ioannis-Orestis GEORGOPOULOS and Ioannis VARDOULAKIS	
	005
8.1. Introduction.	235
8.2. Definition of constitutive stress for granular media	235
8.2.1. Taylor's intergranular stress	235
8.2.2. Skempton's constitutive stress	241
8.2.3. Biot's constitutive stress.	243

x Micromechanics of Failure in Granular Geomateri

8.2.4. Constitutive stress for a soft-rained material	245
8.3. Expanded perlite – the case of a highly compressible granular medium	246
8.3.1. Origin of raw material	246
8.3.2. Physical properties of expanded perlite	247
8.3.3. Isotropic triaxial compression tests on expanded perlite	249
8.3.4. Discussion of Terzaghi's effective stress principle based on	
drained and undrained triaxial compression tests	252
8.3.5. Drained triaxial compression tests on dry specimens	252
8.3.6. Drained triaxial compression tests on water-saturated	
specimens	254
8.3.7. Undrained triaxial tests on water-saturated specimens	256
8.3.8. Structural cohesion and shear softening.	258
8.4. Main results and conclusions	260
8.5. Acknowledgements	261
8.6. Bibliography	261
Chapter 9. Capillary Cohesion of Wet Granular Media	263
Moulay Said EL YOUSSOUFI, Farhang RADJAÏ, Vincent RICHEFEU and	
Fabien SOULIÉ.	
9.1 Introduction	263
9.2 Capillary cohesion at the local scale	265
9.2.1 Modeling the canillary interaction	265
9.2.1.1 Liquid bridge and capillary force	265
9.2.1.1. Equilationage and capitally force	266
9.2.7.2. Finder of cupitary coneston	267
9.2.2. Influence of narameters	270
9.2.4 Implementation of capillarity in a DFM code	271
9.2.4.1 Capillary-type interaction law	271
9.2.4.2. Distribution of liquid inside a numerical sample	272
9.3 Shearing weakly confined cohesive materials	272
9 3 1 Experimental study	272
9.3.1.1 Experimental setup and materials	272
9 3 1 2 Experimental results	273
9 3 2 Discrete numerical simulations	275
9.3.2.1 Numerical sample	276
9.3.2.2 Presentation and analysis of numerical results	277
9 3 3 Microscopic origins of the macroscopic cohesion	278
9 3 3 1 Force transmission	279
9.3.3.2. Analysis of macroscopic stresses in the presence	_,,
of capillary forces	280
9.4. Rupture of a granular sample under simple compression	283
9 4 1 Experimental study	284

9.4.2. Discrete numerical simulations.	285
9.4.3. Comparison between simulations and experiments	286
9.4.4. Effect of the distribution and number density of liquid bonds	287
9.5. Conclusion	291
9.6. Bibliography	291
Chapter 10. Numerical Modeling of Failure Mechanisms	295
José FERNANDEZ MERODO, Pablo MIRA, Manuel PASTOR and	
Laura IONNI	
10.1. Introduction	295
10.2. Mathematical model	296
10.2.1. Introduction	296
10.2.2. General model	297
10.2.3. Balance equations	298
10.2.4. Swansea model: $u-p_w$ formulation	299
10.3. Constitutive models	300
10.3.1. Introduction	300
10.3.2. Generalized plasticity.	302
10.3.3. A simple model for sand behavior	303
10.3.4. Model of collapsible soils	306
10.3.5. Model of unsaturated soils.	308
10.4. Numerical model.	31
10.4.1. Discretization of balance equations in space	312
10.4.2. Computation of stress increments	314
10.4.3. Other special numerical techniques	316
10.5. Applications.	318
10.5.1. Localized failure in a drained biaxial test	319
10.5.2. Diffuse failure of a soil layer of a very loose sand under	
seismic loading	320
10.5.3. Diffuse failure in the foundation of a caisson-type dyke	
under wave action	323
10.6. Conclusions	325
10.7. Acknowledgements	326
10.8. Bibliography	326
List of Authors	333
Index	337