Contents

PREFACE	xi
CHAPTER 1. RELIABILITY-BASED DESIGN OPTIMIZATION Philippe POUGNET and Hichame MAANANE	1
 1.1. Introduction	2 3
calculations	5
reliability of the system	7
stresses leading to failures	9
1.2.4. Determining the critical effect of stresses	11
1.2.5. Inducing failures for failure mechanism analysis.	15
1.2.6. Failure mechanism modeling	19
1.2.7. Design optimization	21
1.3. Conclusion.	23
1.4. Bibliography.	24
CHAPTER 2. NON-DESTRUCTIVE CHARACTERIZATION BY Spectroscopic Ellipsometry of Interfaces in	
MECHATRONIC DEVICES	27
Philippe POUGNET	
2.1. Introduction	28
the optical characteristics of a sample	30

2.3. Rotating component or phase modulator ellipsometers 2.4. Relationship between ellipsometric parameters and	32
intensity of the detected signal	33
2.5. Analysis of experimental data	34
2.6. The stack structural model	37
2.7. The optical model	38
2.8. Application of ellipsometry technique	41
2.8.1. Thin layer from silver nanograins sintered on a	
copper substrate	42
2.8.2. Analysis of ellipsometric spectra of polymers	
on different substrates.	45
2.8.3. Analysis and comparison after stress	50
2.8.4. Physical analysis of light and matter interaction in	
terms of hand gap energy.	52
2.9. Conclusion	53
2.10. Bibliography	54
CHAPTER 3. METHOD OF CHARACTERIZING THE	
ELECTROMAGNETIC ENVIRONMENT IN HYPERFREQUENCY	
CIRCUITS ENCAPSULATED WITHIN METALLIC CAVITIES	57
Samh KHEMIRI Abhishek RAMANILIAN Moncef KADI and Zouheir RIAH	
Samir Kilewiki, Adinsiek Kawawujan, Wolece Kabi and Zoulen Kian	
3.1. Introduction	57
3.1. Introduction 3.2. Theory of metallic cavities	57 58
3.1. Introduction	57 58 58
3.1. Introduction 3.2. Theory of metallic cavities 3.2.1. Definition 3.2.2. Electromagnetic field in a parallelepiped cavity	57 58 58 59
3.1. Introduction 3.2. Theory of metallic cavities 3.2.1. Definition 3.2.1. Definition 3.2.2. Electromagnetic field in a parallelepiped cavity 3.2.3. Resonance frequencies	57 58 58 59 59
3.1. Introduction 3.2. Theory of metallic cavities 3.2.1. Definition 3.2.1. Definition 3.2.2. Electromagnetic field in a parallelepiped cavity 3.2.3. Resonance frequencies 3.3. Effect of metal cavities on the radiated emissions	57 58 58 59 59
3.1. Introduction	57 58 58 59 59 61
3.1. Introduction	57 58 59 59 61 61
 3.1. Introduction	57 58 59 59 61 61
 3.1. Introduction	57 58 59 59 61 61
 3.1. Introduction	 57 58 59 59 61 61 67
3.1. Introduction 3.2. Theory of metallic cavities 3.2.1. Definition 3.2.1. Definition 3.2.2. Electromagnetic field in a parallelepiped cavity 3.2.3. Resonance frequencies 3.3. Effect of metal cavities on the radiated emissions of microwave circuits 3.3.1. Circuit case study: 50Ω microstrip line 3.4. Approximation of the electromagnetic field radiated in the presence of the cavity from the electromagnetic field radiated in the presence of the cavity 3.4.1. Principle of the approach	57 58 59 59 61 61 61
3.1. Introduction	57 58 59 59 61 61 61 67 67 67
3.1. Introduction	57 58 59 59 61 61 61 67 67 72
3.1. Introduction3.2. Theory of metallic cavities3.2.1. Definition3.2.2. Electromagnetic field in a parallelepiped cavity3.2.3. Resonance frequencies3.3. Effect of metal cavities on the radiated emissionsof microwave circuits3.3.1. Circuit case study: 50Ω microstrip line3.4. Approximation of the electromagnetic field radiatedin the presence of the cavity from the electromagneticfield radiated without cavity3.4.1. Principle of the approach3.4.3. Results and discussion3.5. Conclusion	57 58 59 59 61 61 61 67 67 72 75

CHAPTER 4. METROLOGY OF STATIC AND DYNAMIC DISPLACEMENTS AND DEFORMATIONS USING FULL-FIELD	
TECHNIQUES	79
Ioana NISTEA and Dan BORZA	
4.1. Introduction	79
4.2. Speckle interferometry4.2.1. Principles of displacement field metrology by speckle	82
interferometry	82
measurement setup	90
4.2.3. Examples of static displacement field measurements4.2.4. Examples of measurements of vibration	91
displacements fields	100
4.2.5. Examples of dynamic measurements	106
4.3. Moiré projection	107
displacement fields	108
4.3.2. Description of the Moiré projection measurement setup4.3.3. Examples of displacement field metrology by	110
Moiré projection	111
4.4. Structured light projection	112
measuring surface topography	112
measurement setup	114
structured light projection	115
4.5. Conclusion	117
4.6. Bibliography	117
CHAPTER 5. CHARACTERIZATION OF SWITCHING	
TRANSISTORS UNDER ELECTRICAL OVERVOLTAGE STRESSES Patrick MARTIN, Ludovic LACHEZE, Alain KAMDEL and Philippe DESCAMPS	119
5.1 Introduction	119
5.2 Stress test over FSD/FOV electric constraints	120
5.2.1 Description of the TPG test equipment	120
5.2.1. Description of the 11 of test equipment	120
5.2.2. Subsets applied to the transistor	121
$5.2.5$. Testing procedure \ldots $5.2.4$ TPG capabilities	123
5.3 Simulation results	124

5.3.1. Highlighted phenomena	125
5.3.2. Influence of parasitic phenomena	125
5.4. Experimental setup	128
5.4.1. Measurement results and analysis of	
observed phenomena	130
5.5. Conclusion	138
5.6. Bibliography	139
CHAPTER 6. RELIABILITY OF RADIO FREQUENCY POWER	
TRANSISTORS TO ELECTROMAGNETIC AND THERMAL STRESS	141
Samh KHEMIRI and Moncef KADI	
6.1. Introduction	141
6.2. The GaN technology	142
6.3. Radiated electromagnetic stress	144
6.3.1. Presentation of the test equipment	144
6.3.2. Results and analysis	145
6.4. RF CW continuous stress	149
6.4.1. Presentation of the test equipment	149
6.4.2. Results and analysis	149
6.5. Thermal exposure	152
6.5.1. Presentation of the test equipment	152
6.5.2. Results and analysis	153
6.6. Combined stresses: RF CW + electromagnetic (EM)	
and electric + EM	156
6.6.1. Effect of the simultaneous application of	
electromagnetic and RF stresses	156
6.6.2. Effect of the simultaneous application of	
electromagnetic and continuous DC stresses	158
6.7. Conclusion	161
6.8. Bibliography	161
CHAPTER 7. INTERNAL TEMPERATURE MEASUREMENT	
OF ELECTRONIC COMPONENTS	165

Eric JOUBERT, Olivier LATRY, Pascal DHERBECOURT, Maxime FONTAINE, Christian GAUTIER, Hubert POLAERT and Philippe EUDELINE

7.1. Introduction	165
7.2. Experimental setup	166
7.3. Measurement Results	168
7.3.1. IR measurements	168
7.3.2. Electrical measures	171
7.3.3. Optical measurement methods	174

7.3.4. Comparison between infrared and electrical methods7.4. Conclusion	180 182 184
CHAPTER 8. RELIABILITY PREDICTION OF EMBEDDED ELECTRONIC SYSTEMS: THE FIDES GUIDE	185
8.1. Introduction	185
8.2. Presentation of the FIDES guide	187
8.2.1. Global modeling	187
8.2.2. Generic model	187
8.2.3. Mathematical foundations	188
8.2.4. Justifying the use of a constant failure rate/intensity	189
8.2.5. Assessing λ_0	190
8.2.6. Acceleration factors	191
8.2.7. Life profile	192
8.2.8. Testing performed at electronic board level	194
8.2.9. Component-level testing	197
8.2.10. "Component family" testing	197
8.2.11. Example of "MOSFET" power transistors	199
8.3. FIDES calculation on an automotive mechatronic system	200
8.3.1. Goals of the FIDES calculation	201
8.3.2. Methodology	201
8.3.3. Life profile	202
8.3.4. Results for the SMI board components	207
8.3.5. Results for the FR4 board components	207
8.3.6. Failure rate of the DC-DC converter	208
8.5.7. Effect of the amplitude of the thermal cycles	200
01 the method with the results of the UTE C 20 210	209
standard	210
8.4. Conclusion	210
8.4. Conclusion	210
8.3. Bibliography	210
CHAPTER 9. STUDY OF THE DYNAMIC CONTACT BETWEEN DEFORMABLE SOLIDS	213
9.1. Introduction	213
9.2. Preliminaries.	215
9.3. Main results	217

9.4. Proposed numerical method	222
9.4.1. Contact treatment	223
9.4.2. Time integration algorithm	224
9.5. Numerical results	225
9.5.1. Principles of motors based on travelling waves	225
9.5.2. Modeling and results	228
9.6. Conclusion	230
9.7. Bibliography	231
LIST OF AUTHORS	233
INDEX	235
SUMMARY OF VOLUME 2	237