Preface

Objectives of this book

This book is an introduction to a set of software specificatizethods. Its targeted
audience are readers who do not wish to read pages of defitioorder to under-
stand the basics of a method. Té@me case studg used to introduce each method,
following a rigorously uniform presentation format. Spdatare has been devoted
to ensure that specifications do not deviate from the casly $&xt. As much as the
method allows, what is specified is what appears in the casly $&xt. The benefits
are twofold. First, the reader can easily switch from onehméto another, using his
knowledge of the case study as a leverage to understand a eévadan Second, it
becomes easier to compare methods, because the same bé&hapiecified in each
case.

Each method presentation follows the same pattern. Theept®i@re progres-
sively introduced when they are needed. To illustrate tleeifipation process, ques-
tions that the specifier should raise during the analysis@€ase study are stated. An-
swers are provided as if they were given by an imaginary tliehe question/answer
process guides the derivation of the specification. Intergly, the questions raised
depend on the method, which is illustrative of the diffeembetween them. When a
question is raised in one method and not in another, the réadean issue to resolve:
does the other method allow this question? If so, what shihk@ldnswer be? As such,
this book is a trigger to stimulate the reader’s curiositgwtispecification methods; it
does not intend to provide all the answers. More elaboratenmas are referenced in
each chapter for a deeper coverage.

Some definitions

A specificationmethodis a sequence of activities leading to the development of a
product, called a specification. A method should provideughayuidance on how to
conduct the activities and on how to evaluate the qualitheffinal product. Aspec-
ification is a precise description, written in some notation (lang)agf the client’s
requirements. A notation is said to bermal if it has a formal syntax and formal
semantics. A notation is said to bemi-formaif it only has a formal syntax.

Several characteristics of a system can be specified. Onelistayguish between

viii ~ Software Specification Methods

functional requirements, efficiency requirements and @npntation requirements.
Functional requirements address the input-output behafia system. Efficiency
requirements address the execution time of a system. Téetchay be interested
in specifying a time bound for obtaining a response from tfsesn. Some authors
argué that a specification without time bounds is not an effectpecsfication: in-
deed, strictly speaking, if the specification does not idela time bound, the imple-
mentation may take an arbitrary duration to provide a resporit is impossible to
distinguish between an infinite loop and a program that takearbitrary time to re-
spond. Implementation requirements address issues kkgrigramming language to
use, the software components to reuse, the targeted hargledform, the operating
systems. The methods described in this book address faattiequirements.

Specifications as contracts

A specification constitutes@ntractbetween the client and the specifier. As such, the
client must be able to understand the specification, in calealidate it. Typically,
clients are not sufficiently versed in specialized notatimunderstand a specification.
There are several ways to circumvent this lack of famijarithe least is to rephrase
the specification in the client’s natural language, av@dambiguities as much as
possible. If the specification is executable, scenariobeansted with the client. The
use of examples and counter-examples is a good techniquestoesthat the client
and the specifier understand each other.

The specification is also a contract between the specifietranignplementor. Of
course, it is expected that the implementor understandsdtagion used for the spec-
ification. The implementor may not be familiar at all with tbient’s requirements
and his application domain. The natural langage descrigtiovided to the client is
also essential to the implementor, because it justifies apthias the specification.
It allows the implementor to map specification concepts foliaation domain con-
cepts. The textual description is to a specification whatamgiions are to formulas
in mathematics.

Risks of not using specifications

Developing a software system without a specification is @eamprocess. The im-
plementation is doomed to be modified, sometimes foreveguse it never precisely
matches the client’s needs. The goal of a specification igfituce the client’s require-
ments in a concise, clear, unambiguous manner to minimeesks of failure in the

development process. It is much cheaper to change a sp#oiiitiaan to change an
implementation.

Additionally, the specification must leave as much freedsmassible to the im-
plementor, in order to find the best implementation in terfrdewelopment cost, effi-

IHehner E.C.R. (1993) Practical Theory of Programmingdspringer-Verlag

Preface ix

ciency, usability and maintainability. Abstraction is eoglanechanism to support im-
plementation freedom. For instance, if a sort function nibesspecified, the specifier
need not to specify that a particular sort algorithm shoe@dised. The implementor
is free to pick any sorting algorithm like quicksort or bubddbrt. Non-determinism
is another good mechanism to provide more freedom for thdeimgntation. For
instance, one may specify a function that changes a dolfaa &t of coins by just
stating that the sum of the coins is equal to one dollar. Tleeifpation need not to
prescribe how the set of coins is selected. During the impteation, an algorithm
that minimizes the number of coins may be used, or one thatigkof five-cent coins
first, in order to minimize the weight of the coins in the maweh{just for the sake of
the argument).

Even when the implementation is finished, the specificasorery useful. Con-
ducting maintenance without a specification is a risky, espe business. To modify
a program, one must first know what it does.

Validation of a specification

A fundamental issue is to make sure that the specificatioicines” the client’s needs.
This activity is calledvalidation Note that we use the verb “match” instead of a
stronger verb like “prove”, or “demonstrate”, in the defioit of the validation con-
cept. By its very nature, a specification cannot be “provedimatch the client’s
requirements. If such a proof existed, then it would reqairether description of the
requirements. If such a description is available, tihéna specification.

A specification is the starting point of the development pesc It has the same
status as axioms of a mathematical theory. They are assuntedright. Of course,
one can prove that a specificatiorcisnsisten{i.e., that it does not include a contra-
diction), just as one can prove that the axioms of a theorgansistent. But this is a
different issue from validation.

Validation consists essentially of statipgopertiesabout the specification, and
proving that the specification satisfies these propertiepd?ties describe usage sce-
narios at various levels of abstraction. They can refer twoete sequences of events,
or they can be general statements about the safety or te$gef the system.

The more properties are stated, the more the confidence isptwfication va-
lidity is increased. Properties are like theorems of a tyethrey must follow from
the specification. In summary, validation is an empiricalgass; a specification is
deemed valid until one finds a desired property that is nigfszd.

Satisfaction of a specification

It must be possible to demonstrate that the implementatitisfieghe specification.
A first approach is to progressivelgfinethe specification until an implementation is
reached. If it is possible mathematically to prove that eafimement satisfies the
specification, we say that the development procefsrimal. Another approach is to

X Software Specification Methods

test the implementatioMest caseare derived from the specification. The results ob-
tained by running the implementation for these test cagesampared with the results
prescribed by the specification. Such a development priesail to benformal. For
most practical applications, it is not feasible to exhadyitest a system.

From a theoretical viewpoint, proving the correctness ofiraplementation is
more appropriate than testing it. From a practical viewpdiesting is easier to
achieve. Since Godel and Turing, we know the strengthstamtimhitations of formal
development processes. For more than 30 years now, conggigetists have inves-
tigated the application of mathematics to the developmesbfiware systems, with
the ultimate goal of developing techniques to prove thahgrémentation satisfies a
specification. Progress has been made, but much remaingitmiee

Tools

A semi-formal notation may be supported by tools like editamd syntax checkers. A
formal notation, thanks to its formal semantics, may alseupported by interpreters,
theorem provers, model checkers and test case generatpgzot$for informal nota-
tions is limited to general purpose editors using templtedocuments.

Structure of the book

This book is divided in four parts. The first part includegethased specification
methods. In these methods, the description of the systeawvimeths centered around
the notion of state transition. The operations (also cdliedtions) of the system are
specified by describing how their execution change the sfdtee system.

The second part is dedicated to event-based methods. Ahisveemessage that
is exchanged between the environment and the system. Baseti methods describe
which events can occur and in what order. Some of these meta@related to
state-based specifications, as they also describe stagitivas. Others use process
algebras or traces to describe the possible sequences$eve

The third part includes methods based on three quite diffgr@adigms. The first
method uses an algebraic approach. The system is descsbeglaorts, operations
and equations. Abstract data types are classical examipédgedraic specifications.
The second method is based on higher-order logic and typeloda calculus. Oper-
ations are defined as functions on the system state. Thenasire based on Petri
nets. A Petri net is a graph with two kinds of vertices: plaaed transitions. Tokens
are assigned to places. The behavior of the system is repeeldey the movement of
tokens between places using transitions.

To help the reader in understanding and comparing the metltioel last part pro-
vides a qualitative comparison of the methods based on a auailattributes such
as paradigm, formality, provability, verification and ghéqal representation. It also
includes a glossary of the most important concepts useceichpters, providing a
definition of their contextual usage.

Preface xi

Summary of changes in the second edition

The first edition of this book was published by Springer-&griLondon in 2001. This
new edition welcomes six new chapters: four new methods (ABMnt B, TLA+,
and UML-2Z), the comparison and the glossary. Finally, éxgsthapters have been
revised to adjust their contents to reflect recent developse

The case study

The next sections reproduce the text of the case study tteswamitted to authors
and the guidelines for preparing their specifications. Tasestudy seems very simple
the first time through. When reading the various solutiomg, quickly finds that its
detailed analysis is surprisingly stimulating.

The text of the case study

=

. The subject is to invoice orders.

2. To invoice is to change the state of an order (to changerit he state “pend-
ing” to “invoiced”).

3. On an order, we have one and one only reference to an orgesddct of a
certain quantity. The quantity can be different to othereosd

4. The same reference can be ordered on several differesrsord

5. The state of the order will be changed into “invoiced” i tbrdered quantity is
either less or equal to the quantity which is in stock aceaydo the reference
of the ordered product.

6. You have to consider the two following cases:

(a) Casel
All the ordered references are references in stock. Thé stothe set of
the orders may vary:

e due to the entry of new orders or cancelled orders;
e due to having a new entry of quantities of products in stocthat
warehouse.

However, we do not have to take these entries into accouris means

that you will not receive two entry flows (orders, entries fack). The

stock and the set of orders are always given to you in a uate-state.
(b) Case 2

You do have to take into account the entries of:

e new orders;
e cancellations of orders;
e entries of quantities in the stock.

xii ~ Software Specification Methods

The guidelines for preparing specifications

Perhaps you will consider that the case study text is incetaglr ambiguous. One
goal of this exercise is to know what questions are raisechbh enethod.

You may propose different solutions (expressing consisegruirements) and you
will explain how your method(s) have brought you to propdsese solutions.

The questions that you had to deal with in order to solve tise study should be
stated according to the following guidelines:

e Questions must be on the problem domain. They are directéettoser. They
must be specific.

e Questions are better answered by several answers (opticispne answer to
continue the analysis.

e Show what verifications your method has allowed you to do.(egfection of
inconsistencies in the answers that you have chosen).

Finally, do not extend the domain. For example, do not spestidfick management
(e.g., when to restock, following what minimum quantitys.gtdo not add new in-
formation such as category of customer, category of progagtment modality, bank
account, etc.

Warning

This book illustrates some specification methods using glesicase study. Although
it is an excellent approach, from a pedagogical viewpoinprbvide an overview and
a basic comparison of methods, the reader should not camthad it is sufficient to
evaluate and select specification methods. Each method kasrigths and weak-
nesses. A single case study cannot claim to properly reprafef them.

Wishing to contribute?

We would like this project to continue to evolve. If you wighdolve this case study
using your favorite method, please check the book’s web page
http://www.dmi.usherb.ca/ spec
Your contribution and comments are welcome. The case sjuityelines, new so-
lutions, comments about solutions and additional matedhbut specification meth-
ods will be available at this address.

Acknowledgements

This book is part of a long story. In 1994, Henri Habrias pregumbto the community
of software engineering the Invoicing case study. The fiokiton, with SA/RTand
SCCSwas submitted by Andy Galloway (University of York, UK) adistributed to
the participants of th&cole d'etéCEA-EDF-INRIAIn June 1995. Three years later,

Preface xiii

an International Workshop on Comparing Systems Specificafechniques, titled
“What questions are prompted by one’s particular method pecification?” was
co-organized in Nantes by M. Allemand, C. Attiogbé and Hbkkas in March 1998

This book was developed and refined in a collaborative effaetch contributor
has reviewed chapters of other contributors. Their mutugdisstions and comments
have significantly enriched the final version of this book.djGalloway and Steve
Dunne kindly reviewed several chapters. Panawe Batanamodad precious help
for typesetting of the final version, enjoying the intricaleasure of AIpX. We are
grateful to all these people.

Marc Frappier

Henri Habrias
Sherbrooke and Nantes

March 2006

2M. Allemand, C. Attiogbé and H. Habrias, editors, (Invo@8) International Workshop oBomparing
Systems Specification Techniqgues — What Questions are feinpOne’s Particular Method of Specifi-
cation?, Nantes, France, 26-27 March 1998, ISBN 2-906082-29-5.

