
Preface

Objectives of this book

This book is an introduction to a set of software specification methods. Its targeted
audience are readers who do not wish to read pages of definitions in order to under-
stand the basics of a method. Thesame case studyis used to introduce each method,
following a rigorously uniform presentation format. Special care has been devoted
to ensure that specifications do not deviate from the case study text. As much as the
method allows, what is specified is what appears in the case study text. The benefits
are twofold. First, the reader can easily switch from one method to another, using his
knowledge of the case study as a leverage to understand a new method. Second, it
becomes easier to compare methods, because the same behavior is specified in each
case.

Each method presentation follows the same pattern. The concepts are progres-
sively introduced when they are needed. To illustrate the specification process, ques-
tions that the specifier should raise during the analysis of the case study are stated. An-
swers are provided as if they were given by an imaginary client. The question/answer
process guides the derivation of the specification. Interestingly, the questions raised
depend on the method, which is illustrative of the differences between them. When a
question is raised in one method and not in another, the reader has an issue to resolve:
does the other method allow this question? If so, what shouldthe answer be? As such,
this book is a trigger to stimulate the reader’s curiosity about specification methods; it
does not intend to provide all the answers. More elaborate materials are referenced in
each chapter for a deeper coverage.

Some definitions

A specificationmethodis a sequence of activities leading to the development of a
product, called a specification. A method should provide enough guidance on how to
conduct the activities and on how to evaluate the quality of the final product. Aspec-
ification is a precise description, written in some notation (language), of the client’s
requirements. A notation is said to beformal if it has a formal syntax and formal
semantics. A notation is said to besemi-formalif it only has a formal syntax.

Several characteristics of a system can be specified. One maydistinguish between



viii Software Specification Methods

functional requirements, efficiency requirements and implementation requirements.
Functional requirements address the input-output behavior of a system. Efficiency
requirements address the execution time of a system. The client may be interested
in specifying a time bound for obtaining a response from the system. Some authors
argue1 that a specification without time bounds is not an effective specification: in-
deed, strictly speaking, if the specification does not include a time bound, the imple-
mentation may take an arbitrary duration to provide a response. It is impossible to
distinguish between an infinite loop and a program that takesan arbitrary time to re-
spond. Implementation requirements address issues like the programming language to
use, the software components to reuse, the targeted hardware platform, the operating
systems. The methods described in this book address functional requirements.

Specifications as contracts

A specification constitutes acontractbetween the client and the specifier. As such, the
client must be able to understand the specification, in orderto validate it. Typically,
clients are not sufficiently versed in specialized notations to understand a specification.
There are several ways to circumvent this lack of familiarity. The least is to rephrase
the specification in the client’s natural language, avoiding ambiguities as much as
possible. If the specification is executable, scenarios canbe tested with the client. The
use of examples and counter-examples is a good technique to ensure that the client
and the specifier understand each other.

The specification is also a contract between the specifier andthe implementor. Of
course, it is expected that the implementor understands thenotation used for the spec-
ification. The implementor may not be familiar at all with theclient’s requirements
and his application domain. The natural langage description provided to the client is
also essential to the implementor, because it justifies and explains the specification.
It allows the implementor to map specification concepts to application domain con-
cepts. The textual description is to a specification what explanations are to formulas
in mathematics.

Risks of not using specifications

Developing a software system without a specification is a random process. The im-
plementation is doomed to be modified, sometimes forever, because it never precisely
matches the client’s needs. The goal of a specification is to capture the client’s require-
ments in a concise, clear, unambiguous manner to minimize the risks of failure in the
development process. It is much cheaper to change a specification than to change an
implementation.

Additionally, the specification must leave as much freedom as possible to the im-
plementor, in order to find the best implementation in terms of development cost, effi-

1Hehner E.C.R. (1993)A Practical Theory of Programming. Springer-Verlag



Preface ix

ciency, usability and maintainability. Abstraction is a good mechanism to support im-
plementation freedom. For instance, if a sort function mustbe specified, the specifier
need not to specify that a particular sort algorithm should be used. The implementor
is free to pick any sorting algorithm like quicksort or bubblesort. Non-determinism
is another good mechanism to provide more freedom for the implementation. For
instance, one may specify a function that changes a dollar for a set of coins by just
stating that the sum of the coins is equal to one dollar. The specification need not to
prescribe how the set of coins is selected. During the implementation, an algorithm
that minimizes the number of coins may be used, or one that gets rid of five-cent coins
first, in order to minimize the weight of the coins in the machine (just for the sake of
the argument).

Even when the implementation is finished, the specification is very useful. Con-
ducting maintenance without a specification is a risky, expensive business. To modify
a program, one must first know what it does.

Validation of a specification

A fundamental issue is to make sure that the specification “matches” the client’s needs.
This activity is calledvalidation. Note that we use the verb “match” instead of a
stronger verb like “prove”, or “demonstrate”, in the definition of the validation con-
cept. By its very nature, a specification cannot be “proved” to match the client’s
requirements. If such a proof existed, then it would requireanother description of the
requirements. If such a description is available, thenit is a specification.

A specification is the starting point of the development process. It has the same
status as axioms of a mathematical theory. They are assumed to be right. Of course,
one can prove that a specification isconsistent(i.e., that it does not include a contra-
diction), just as one can prove that the axioms of a theory areconsistent. But this is a
different issue from validation.

Validation consists essentially of statingpropertiesabout the specification, and
proving that the specification satisfies these properties. Properties describe usage sce-
narios at various levels of abstraction. They can refer to concrete sequences of events,
or they can be general statements about the safety or the liveness of the system.

The more properties are stated, the more the confidence in thespecification va-
lidity is increased. Properties are like theorems of a theory: they must follow from
the specification. In summary, validation is an empirical process; a specification is
deemed valid until one finds a desired property that is not satisfied.

Satisfaction of a specification

It must be possible to demonstrate that the implementationsatisfiesthe specification.
A first approach is to progressivelyrefinethe specification until an implementation is
reached. If it is possible mathematically to prove that eachrefinement satisfies the
specification, we say that the development process isformal. Another approach is to



x Software Specification Methods

test the implementation.Test casesare derived from the specification. The results ob-
tained by running the implementation for these test cases are compared with the results
prescribed by the specification. Such a development processis said to beinformal. For
most practical applications, it is not feasible to exhaustively test a system.

From a theoretical viewpoint, proving the correctness of animplementation is
more appropriate than testing it. From a practical viewpoint, testing is easier to
achieve. Since Gödel and Turing, we know the strengths and the limitations of formal
development processes. For more than 30 years now, computerscientists have inves-
tigated the application of mathematics to the development of software systems, with
the ultimate goal of developing techniques to prove that an implementation satisfies a
specification. Progress has been made, but much remains to bedone.

Tools

A semi-formal notation may be supported by tools like editors and syntax checkers. A
formal notation, thanks to its formal semantics, may also besupported by interpreters,
theorem provers, model checkers and test case generators. Support for informal nota-
tions is limited to general purpose editors using templatesfor documents.

Structure of the book

This book is divided in four parts. The first part includes state-based specification
methods. In these methods, the description of the system behavior is centered around
the notion of state transition. The operations (also calledfunctions) of the system are
specified by describing how their execution change the stateof the system.

The second part is dedicated to event-based methods. An event is a message that
is exchanged between the environment and the system. Event-based methods describe
which events can occur and in what order. Some of these methods are related to
state-based specifications, as they also describe state transitions. Others use process
algebras or traces to describe the possible sequences of events.

The third part includes methods based on three quite different paradigms. The first
method uses an algebraic approach. The system is described using sorts, operations
and equations. Abstract data types are classical examples of algebraic specifications.
The second method is based on higher-order logic and typed lambda calculus. Oper-
ations are defined as functions on the system state. The last two are based on Petri
nets. A Petri net is a graph with two kinds of vertices: placesand transitions. Tokens
are assigned to places. The behavior of the system is represented by the movement of
tokens between places using transitions.

To help the reader in understanding and comparing the methods, the last part pro-
vides a qualitative comparison of the methods based on a number of attributes such
as paradigm, formality, provability, verification and graphical representation. It also
includes a glossary of the most important concepts used in the chapters, providing a
definition of their contextual usage.



Preface xi

Summary of changes in the second edition

The first edition of this book was published by Springer-Verlag London in 2001. This
new edition welcomes six new chapters: four new methods (ASM, Event B, TLA+,
and UML-Z), the comparison and the glossary. Finally, existing chapters have been
revised to adjust their contents to reflect recent developments.

The case study

The next sections reproduce the text of the case study that was submitted to authors
and the guidelines for preparing their specifications. The case study seems very simple
the first time through. When reading the various solutions, one quickly finds that its
detailed analysis is surprisingly stimulating.

The text of the case study

1. The subject is to invoice orders.
2. To invoice is to change the state of an order (to change it from the state “pend-

ing” to “invoiced”).
3. On an order, we have one and one only reference to an orderedproduct of a

certain quantity. The quantity can be different to other orders.
4. The same reference can be ordered on several different orders.
5. The state of the order will be changed into “invoiced” if the ordered quantity is

either less or equal to the quantity which is in stock according to the reference
of the ordered product.

6. You have to consider the two following cases:

(a) Case 1
All the ordered references are references in stock. The stock or the set of
the orders may vary:

• due to the entry of new orders or cancelled orders;
• due to having a new entry of quantities of products in stock atthe

warehouse.

However, we do not have to take these entries into account. This means
that you will not receive two entry flows (orders, entries in stock). The
stock and the set of orders are always given to you in a up-to-date state.

(b) Case 2
You do have to take into account the entries of:

• new orders;
• cancellations of orders;
• entries of quantities in the stock.



xii Software Specification Methods

The guidelines for preparing specifications

Perhaps you will consider that the case study text is incomplete or ambiguous. One
goal of this exercise is to know what questions are raised by each method.

You may propose different solutions (expressing consistent requirements) and you
will explain how your method(s) have brought you to propose these solutions.

The questions that you had to deal with in order to solve the case study should be
stated according to the following guidelines:

• Questions must be on the problem domain. They are directed tothe user. They
must be specific.
• Questions are better answered by several answers (options); pick one answer to

continue the analysis.
• Show what verifications your method has allowed you to do (e.g., detection of

inconsistencies in the answers that you have chosen).

Finally, do not extend the domain. For example, do not specify stock management
(e.g., when to restock, following what minimum quantity, etc.), do not add new in-
formation such as category of customer, category of product, payment modality, bank
account, etc.

Warning

This book illustrates some specification methods using a single case study. Although
it is an excellent approach, from a pedagogical viewpoint, to provide an overview and
a basic comparison of methods, the reader should not conclude that it is sufficient to
evaluate and select specification methods. Each method has it strengths and weak-
nesses. A single case study cannot claim to properly represent all of them.

Wishing to contribute?

We would like this project to continue to evolve. If you wish to solve this case study
using your favorite method, please check the book’s web pageat:

http://www.dmi.usherb.ca/~spec

Your contribution and comments are welcome. The case study,guidelines, new so-
lutions, comments about solutions and additional materials about specification meth-
ods will be available at this address.

Acknowledgements

This book is part of a long story. In 1994, Henri Habrias proposed to the community
of software engineering the Invoicing case study. The first solution, with SA/RTand
SCCS, was submitted by Andy Galloway (University of York, UK) anddistributed to
the participants of théEcole d’étéCEA-EDF-INRIAin June 1995. Three years later,



Preface xiii

an International Workshop on Comparing Systems Specification Techniques, titled
“What questions are prompted by one’s particular method of specification?” was
co-organized in Nantes by M. Allemand, C. Attiogbé and H. Habrias in March 19982.

This book was developed and refined in a collaborative effort. Each contributor
has reviewed chapters of other contributors. Their mutual suggestions and comments
have significantly enriched the final version of this book. Andy Galloway and Steve
Dunne kindly reviewed several chapters. Panawe Batanado provided precious help
for typesetting of the final version, enjoying the intricatepleasure of LATEX. We are
grateful to all these people.

Marc Frappier
Henri Habrias

Sherbrooke and Nantes
March 2006

2M. Allemand, C. Attiogbé and H. Habrias, editors, (Invoice’98) International Workshop onComparing
Systems Specification Techniques — What Questions are Prompted by One’s Particular Method of Specifi-
cation?, Nantes, France, 26-27 March 1998, ISBN 2-906082-29-5.




