
Chapter 3

Advanced Techniques

The advanced techniques presented in this chapter are meant to solve difficult grids.

3.1. Pairs, triples and subsets

In this section, we focus on looking for sets of particular values inside a given
region.

3.1.1. The naked pair technique

Consider a given region. Suppose that in this region there are two cells for which
the two same values are the only candidates. As such, these values can be safely
removed from the candidate lists of the other cells of the region.

Indeed, assigning any of these values to another cell will leave one of the two
identified cells without a potential value, which is strictly forbidden for a sudoku grid.

Formally:

RULE 3.1 – naked pair –
– Parameter: a region R

– Condition: ∃(i1, j1) ∈ R, (i2, j2) ∈ R,
what({(i1, j1), (i2, j2)}) = {v1, v2}

– Deduction: ∀(i, j) ∈ R \ {(i1, j1), (i2, j2)}, (i, j) �= v1, (i, j) �= v2
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Figure 3.1. Rule 3.1 at work

EXAMPLE.– Consider the grid in Figure 3.1. In column C5, cells (4, 5) and
(6, 5) only accept values 1 and 4. Therefore, these values can be removed
from the candidate lists of all the other cells in the column. Thus, the value 4
is removed from cell (3, 5). The rule can also be applied on block B5 leading
to the removal of 4 from all cells in column C4 intersecting with block B5. It
can then be deduced that cell (5, 4) must be assigned with the value 7.

EXERCISE 18. – Solve the grid in Figure 3.1.

3.1.2. The naked tuples technique

Rule 3.1 can be rewritten to take into account k values. For example, for three
values, the following formal rule can be written:

RULE 3.2 – naked triple –
– Parameter: a region R

– Condition: ∃(i1, j1) ∈ R, (i2, j2) ∈ R, (i3, j3) ∈ R,
what({(i1, j1), (i2, j2), (i3, j3)}) = {v1, v2, v3}

– Deduction: ∀(i, j) ∈ R \ {(i1, j1), (i2, j2), (i3, j3)},
(i, j) �= v1, (i, j) �= v2, (i, j) �= v3
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Figure 3.2. Rule 3.2 at work

A small issue should be considered here. Although this is not the case for the
previous rule, the three values may not all be present in the three identified cells. This
is the union of the candidates that form a triple over the three cells.

EXAMPLE.– On the grid of Figure 3.2, rule 3.2 can be applied on row R2.
Cells (2, 3), (2, 6), and (2, 8) share three candidates: 2, 7, and 9. Therefore,
value 9 can be removed from cells (2, 7) and (2, 9) as well as value 2 from
cell (2, 7).

EXERCISE 19. – Where is the triple on row R6 in the grid of Figure 3.3?

More generally, for k values, the rule becomes:

RULE 3.3 – naked tuple –
– Parameters: a region R, an integer k

– Condition: ∃{(i1, j1), . . . , (ik, ck)} ∈ Rk,
what({(i1, j1), . . . , (ik, jk)}) = {v1, . . . , vk}

– Deduction: ∀v ∈ what({(i1, j1), . . . , (ik, jk)}),
∀(i, j) ∈ R \ {(i1, j1), . . . , (ik, ck)}, (i, j) �= v

EXERCISE 20. – There is a quad in block B9 in the grid of Figure 3.4. Can
you see it?
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Figure 3.3. Looking for a triple (rule 3.2)
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Figure 3.4. Looking for a quad (rule 3.3)
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Figure 3.5. Rule 3.4 at work

3.2. Hidden subsets

There exist a dual set of rules (compared to the previous ones). They can be used
when the subset of values that are being sought are hidden. Let us illustrate this duality
first with hidden pairs.

3.2.1. The hidden pair technique

Consider a given region. If there are two values that have the same possible cell
position of only two, then all other values are forbidden for these two cells.

Indeed, if any other value is assigned to one of these cells, one of the identified
values will have no possible position in the region. This would not be acceptable.

Formally:

RULE 3.4 – hidden pair –
– Parameters: a region R, two values v1 and v2

– Condition: where({v1, v2}, R) = Ov1,v2 and |Ov1,v2 | = 2
– Deduction: ∀v �∈ {v1, v2},∀(i, j) ∈ Ov1,v2 , (i, j) �= v
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Figure 3.6. Rule 3.5 at work

EXAMPLE.– In the grid of Figure 3.5, values 7 and 9 on column C7 are can-
didates in only two cells. All other values may be removed from those two
cells.

NOTE.– Inferring such information is useful because other rules may apply.

EXERCISE 21. – Which other rule (from this chapter) can be applied here
with exactly the same result?

3.2.2. The naked tuple technique

As for rule 3.1, the previous rule may be generalized to k values. Therefore:

RULE 3.5 – hidden tuple –
– Parameter: a region R, a set V of k values
– Condition: where(V,R) = OV and |OV | = k

– Deduction: ∀v �∈ V,∀(i, j) ∈ OV , (i, j) �= v

NOTE.– Be careful, because the same issue as above arises: values may not all be present in
the considered cells.

EXAMPLE.– On row R5 in the grid in Figure 3.6, values 3, 6, and 7 are only
possible in three cells: (5, 4), (5, 6), and (5, 9). Thus, the rule applies and
value 9 can be removed from cell (5, 9).
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INFORMATION.– The joint application of the rules from rule 2.1 up to rule 3.3 (when only
considering k ≤ 3) can solve any difficult grids.

EXERCISE 22. – Solve the difficult grid in Figure 3.7.
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EXERCISE 23. – Use the learnt techniques as much as possible on the grid in
Figure 3.8. What is the resulting grid?

In the next chapter we will solve very difficult grids, but, before that, it is worth
having a closer look at the rules presented in this chapter.

3.3. Intrinsic properties of subset based rules

The two sets of rules that we have presented are strongly related. We have seen
this when answering exercise 21. We will now explicitly exhibit this relation, and we
will also show that all these rules are subsumed by a more powerful and general rule.

3.3.1. Subset-based rules duality

Let R be a region with p non-assigned cells. It can easily be shown that rule 3.3
applied to region R for n values has the same result as rule 3.5 applied to region R
and p − n values.

Indeed, these two rules define a partitioning of the region into:
– a set E of 9 − p assigned cells;
– a set F of n cells for which globally only n candidates are available;
– a complement set G of p − n cells which globally contain p − n values that can

be assigned on cells other than in G.

Rules 3.3 and 3.5 both forbid cells in G to receive a value shared by cells in F .

EXAMPLE.– In the grid in Figure 3.1 on page 38, consider column C5. Using
rule 3.5 on values 2, 3 and 6 (which have only three candidate rows R2, R3

and R9) leads to the removal of value 4 from cell (3, 5). This is exactly the
same conclusion as considering rule 3.3 on rows R4 and R6 which only have
two possible values: 1 and 4.

EXERCISE 24. –

What partitioning can be identified when considering row R5 in the grid
of Figure 3.6 on page 42?

3.3.2. Some properties of region reasoning

Reasoning on a given region of a sudoku grid leads to a common situation in
graph theory: the maximum matching problem. On one side, the cells of the region are
considered. On the other side, the digits from 1 to 9 are considered. What is needed is
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Figure 3.9. Two example matchings. The matching on the left is not a maximal matching (cell
c3 has no match). However, the matching on the right is

to assign to each cell a unique digit in such a way that a value is not assigned to two
different cells. This is a matching. It is a maximum matching because all cells must
have a value.

EXAMPLE.– Consider five cells (c1, . . . , c5) and five candidates (1, . . . , 5).
Figure 3.9 gives two example matchings. Such a matching can be repre-
sented as a graph in which left vertices are the cells and right vertices are the
candidates. A link (an edge) between a cell and a candidate represents the
fact that the value is assigned to the cell. In these examples, we can clearly
that no two edges have a vertex in common.

When considering a sudoku grid, a value cannot be assigned to all the cells: some
already have one (the givens), others are restricted to their candidate list, etc. This
information has to be taken into account. Therefore, a specific graph is designed, in
which a maximal matching is to be found: a cell is linked to a digit if the digit is a
valid candidate for this cell.

EXAMPLE.– Let us get back to our five cells and five values. Figure 3.10 gives
an example graph. Here, we have: what({c1}) = {1, 2, 3}, what({c2}) =
what({c3}) = {2, 3}, what({c4}) = {1, 2, 4, 5}, and what({c5}) = {3, 4, 5}.
A maximal matching is sought using only the edges of this graph. Figure 3.11
gives two such matchings (the edges in the matching are in bold).

In the specific context of sudoku, what is looked for is not a solution to this prob-
lem. Indeed, such a solution may actually not fit with the other regions of the grid.

EXAMPLE.– This can be clearly seen on the previous example (see Fig-
ure 3.11). The solution for a sudoku grid is unique: there is no way to tell
which of the two matchings will lead to a solution.
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Figure 3.11. A sudoku-like situation: two example matchings

Indeed, what is needed are:
– the mandatory assignments (not counting givens): are there any cell/value cou-

ples that appear in all the solutions of this problem?
– the forbidden assignments: are there any cell/value couples that never appear in

a solution of this problem?

EXAMPLE.– Consider Figure 3.10. The following points can be identified:
– one mandatory assignment: c1 is bound to have value 1. Indeed, the

other candidates are 2 and 3 but these values are the only possible ones for
a pair of cells (c2 and c3). Therefore, rule 3.1 (the naked pair rule) can be
applied and 1 becomes the only valid candidate for c1 (rule 2.2);
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– several forbidden assignments: c4 cannot take value 1 (it has been as-
signed to c1) and cannot take value 2 for the same reason as before. This is
also the case for cell c5 and value 3.

Thus, c1 must be assigned to value 1, whereas 2 and 3 are shared by c2

and c3, and 4 and 5 are shared by c4 and c5. Indeed, making any other combi-
nation assignment will make it impossible to reach a maximal matching. The
graph of Figure 3.10 becomes that in Figure 3.12: edges that correspond to
values removed from the candidate lists were removed from the graph.

From an algorithmic point of view, identifying mandatory assignments is quite
easy. This is exactly what rules 2.1 and 2.2 do. A simple (i.e., there exists an efficient
algorithm to achieve the calculation) way to answer the second question (forbidden
assignments) consists of identifying set of auto-sufficient and independent elements
(cells and/or values). This is partly what rules 3.1 to 3.5 do with the partition that is
provided. Any cell/value assignment linking any two of these sets will never appear
in a solution.

EXAMPLE.– In Figure 3.10 (page 46), the 4 vertices c2, c3, 2, and 3 form an
auto-sufficient set1. Trying to give another value to c2 or c3 will never lead to
a maximal matching. The same applies if one tries to assign value 2 or 3 to
another cell.

EXERCISE 25. – What are the other auto-sufficient sets in Figure 3.10?

1. The technical name is strongly connected component in an oriented graph where the edges in
the matching are oriented from left to right and the edges not in the matching are oriented from
right to left.
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The rules presented here are all a particular case of this more general reasoning.
There are very efficient algorithms that can be used to solve this problem. They can
deduce several pieces of information at the same time. Unfortunately, using such a
reasoning by hand is a quite difficult and tedious task. However, these algorithms are
very useful when considering developing software to solve sudoku grids. This will be
the topic of Chapter 5.

INFORMATION.– The results presented here are part of a well-known tool in the constraint pro-
gramming community: the alldifferent constraint. For more information, see the chapter Global
constraints and filtering algorithms written by Jean-Charles RÉGIN in the book Constraints and
integer programming combined edited by Michela MILANO and published by Kluwer in 2003,
which gives more detail on involved algorithms.




