
Chapter 1

The Resource-Constrained Project
Scheduling Problem

1.1. A combinatorial optimization problem

Informally, a resource-constrained project scheduling problem (RCPSP) consid-
ers resources of limited availability and activities of known durations and resource
requests, linked by precedence relations. The problem consists of finding a schedule
of minimal duration by assigning a start time to each activity such that the precedence
relations and the resource availabilities are respected.

More formally, the RCPSP can be defined as a combinatorial optimization prob-
lem. A combinatorial optimization problem is defined by a solution space X , which is
discrete or which can be reduced to a discrete set, and by a subset of feasible solutions
Y ⊆ X associated with an objective function f : Y → R. A combinatorial optimiza-
tion problem aims at finding a feasible solution y ∈ Y such that f(y) is minimized
or maximized. A resource-constrained project scheduling problem is a combinatorial
optimization problem defined by a tuple (V, p,E,R, B, b).

Activities constituting the project are identified by a set V = {A0, . . . , An+1}.
Activity A0 represents by convention the start of the schedule and activity An+1 sym-
metrically represents the end of the schedule. The set of non-dummy activities is iden-
tified by A = {A1, . . . , An}.

Durations are represented by a vector p in N
n+2 where pi is the duration of activity

Ai, with special values p0 = pn+1 = 0.
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Precedence relations are given by E, a set of pairs such that (Ai, Aj) ∈ E means
that activity Ai precedes activity Aj . A precedence activity-on-node graph G(V,E)
is defined where nodes correspond to activities and arcs correspond to precedence
relations1. We assume that G contains no cycle, otherwise the precedence relations are
obviously inconsistent. Since precedence is a transitive binary relation, the existence
of a path in G from node Ai to node Aj also means that activity Ai precedes activity
Aj . Thus, all precedence graphs having the same transitive closure define the same
precedence constraints. We assume that, taking account of the preceding remark, E
is such that A0 is a predecessor of all other activities and An+1 is a successor of all
other activities.

Renewable resources are formalized by setR = {R1, . . . , Rq}.

Availabilities of resources are represented by a vector B in N
q such that Bk denotes

the availability of Rk. In particular, a resource Rk such that Rk = 1 is called a unary
or disjunctive resource. Otherwise, as a resource may process several activities at a
time, it is called a cumulative resource.

Demands of activities for resources are abstracted by b, a (n+2)×q integer matrix,
such that bik represents the amount of resource Rk used per time period during the
execution of Ai.

A schedule is a point S in R
n+2 such that Si represents the start time of activity

Ai. Ci denotes the completion time of activity Ai, with Ci = Si+pi. S0 is a reference
point for the start of the project. Here we assume that S0 = 0. A solution S is feasible
if it is compatible with the precedence constraints (1.1) and the resource constraints
(1.2) expressed below, where At = {Ai ∈ A | Si ≤ t < Si + pi} represents the set
of non-dummy activities in process at time t.

Sj − Si ≥ pi ∀(Ai, Aj) ∈ E (1.1)∑
Ai∈At

bik ≤ Bk ∀Rk ∈ R, ∀t ≥ 0 (1.2)

The makespan of a schedule S is equal to Sn+1, the start time of the end activity.
The above-defined set At and constraints state that an activity cannot be interrupted
once it is started. This is referred to as not allowing preemption2. The RCPSP can then
be stated as follows:

1. We will identify in the rest of the chapter each activity with the corresponding node of the
precedence graph.
2. The preemptive case is presented in Chapter 8.



The Resource-Constrained Project Scheduling Problem 23

DEFINITION 1.1.– The RCPSP is the problem of finding a non-preemptive schedule
S of minimal makespan Sn+1 subject to precedence constraints (1.1) and resource
constraints (1.2).

An important preliminary remark is that, since durations are integers, we can
restrict ourselves to integer schedules without missing the optimal solution. A non-
integer feasible schedule can be transformed into an integer feasible schedule without
increasing the makespan by recursively applying the following principle. Consider a
non-integer schedule S and let Ai denote the first activity in the increasing start time
order such that Si �∈ N. Then setting Si to its nearest lower integer �Si	 does not vio-
late any precedence constraints, since the completion time of the predecessors of Ai

are integers strictly lower than Si. Left shifting an activity can violate a resource con-
straint only if it enters new sets At for �Si	 ≤ t < Si. Since we have At ⊆ ASi

\ {i}
for �Si	 ≤ t < Si, no resource-constraint violation can appear by setting Si to �Si	.
The set of integer schedules, containing at least one optimal solution, is said to be
dominant.

1.2. A simple resource-constrained project example

In Table 1.1, a RCPSP instance is given with n = 10 real activities and |R| = 2
resources with availabilities B1 = 7 and B2 = 4.

Ai A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

pi 0 6 1 1 2 3 5 6 3 2 4 0

bi1 0 2 1 3 2 1 2 3 1 1 1 0

bi2 0 1 0 1 0 1 1 0 2 2 1 0

Table 1.1. A project with 10 real activities and 2 resources

The precedence constraints linking the activities Ai ∈ V are displayed in Fig-
ure 1.1 as an activity-on-node graph. A schedule of minimal makespan S∗

n+1 = 12 is
displayed in Figure 1.2 as a 2-dimensional Gantt chart where the x axis represents the
time and the y axis represents the resource occupation.

1.3. Computational complexity

According to the computational complexity theory [GAR 79], the RCPSP is one of
the most intractable combinatorial optimization problems. Indeed, the RCPSP belongs
to the class of problems that are NP-hard in the strong sense. The complexity theory
states that an optimization problem is NP-hard (in the strong sense) if its decision
version is NP-complete (in the strong sense). Let us define the decision variant of the
RCPSP. Let H denote an arbitrarily large integer.
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Figure 1.1. Precedence activity-on-node graph
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DEFINITION 1.2.– The decision variant of the RCPSP is the problem of determining
whether a schedule S of makespan Sn+1 not greater than H subject to precedence
constraints (1.1) and resource constraints (1.2) exists or not.

Roughly, a decision problem is in NP if we can verify in polynomial time if a ten-
tative solution is feasible. Let S denote a schedule. Precedence feasibility can be triv-
ially checked in O(|E|) and the makespan constraint in O(1). Verifying the resource-
feasibility in polynomial time is not a trivial task. Algorithm 1 verifies the feasibility
according to resource-constraints in O(n2|R|). The algorithm is based on the obser-
vation that each change over time of the activity total resource requirements occurs
only at time S0 = 0 or at the completion time of an activity. List L being a sorted list
of the different activity completion times, the algorithm computes each set F of activ-
ities in process at each time t ∈ L, and tests whether the total resource requirements
of each set F exceeds the resource availabilities. Note that directly verifying that the
resource availability is respected by computing set At for each time period t ∈ [0,H[
yields a pseudo-polynomial algorithm, which depends on value H .

Algorithm 1 Resource feasibility checking of a tentative schedule S

1: L = {Cj |Aj ∈ V }
2: sort L in increasing values
3: for t ∈ L do
4: for Rk ∈ R do
5: o← 0, F ← ∅
6: for Aj ∈ A do
7: if Sj < t, Cj ≥ t and bjk > 0 then
8: o← o + bjk, F ← F ∪Aj

9: end if
10: if o > Bk then
11: S is not resource-feasible because activities of F are executed in paral-

lel
12: return false
13: end if
14: end for
15: end for
16: end for
17: return true

Garey and Johnson [GAR 75] have shown that the decision variant of the RCPSP
with a single resource and no precedence constraints, called the resource-constrained
scheduling problem, is NP-complete in the strong sense by reduction from the
3-partition problem. NP-hardness can be shown by a simpler observation made by
Blazewicz et al. [BLA 83] yielding even worse negative results. Let us consider the



26 Resource-Constrained Project Scheduling

famous graph coloring problem. Let G(V, E) be an undirected graph and let c be
an arbitrary integer. Deciding if there is a feasible coloring of the nodes in G with c
colors such that two adjacent nodes do not share the same color is NP-complete in the
strong sense and appears to be a particular case of the decision variant of a RCPSP
with unit durations, no precedence constraints, a disjunctive resource per arc in E
and an activity per node in V with a unit requirement on each resource of its incident
arcs. The coloring problem is feasible if and only if the RCPSP has a makespan not
greater than c. Figure 1.3 illustrates the 3 colored solution as a RCPSP of makespan
3. Switching to optimization, the minimal number of colors needed, corresponding to
the minimal makespan, is called the chromatic number of the graph.
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Figure 1.3. A schedule of minimal makespan equal to the chromatic
number of the displayed graph G(V, E)

When dealing with problems that are NP-hard in the strong sense, an important
question is the existence of a polynomial-time approximation scheme. Uetz [UET 01]
noticed that by a direct extension of non-approximability results obtained by Feige
and Kilian [FEI 98] on graph coloring, it is very unlikely3 that the minimal makespan
can be approximated in polynomial time with a factor of n1−ε for any constant ε > 0.

1.4. Dominant and non-dominant schedule subsets

Let us consider the possibly empty set SH of feasible schedules of a decision vari-
ant of the RCPSP. If we ignore the precedence constraints and considering that integer
solutions are dominant, the possible values for each start time Si can be restricted to
interval [0,H − pi[ yielding possibly ΠAi∈A[0,H − pi[ schedules.

Fortunately, in spite of the computational complexity of the problem stated in the
previous section, it is possible to avoid the complete enumeration of this possibly

3. We refer to [UET 01, FEI 98] for the precise conditions.
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huge search space to find a feasible solution. It is possible to define subsets of sched-
ules significantly smaller than SH that always contain a feasible solution if it exists,
i.e. dominant subsets. These sets of schedules are the sets of semi-active and active
schedules, based on the concepts of local and global left shifts, respectively. Let us
consider a schedule S and an activity Ai. The global left shift operator LS(S,Ai,∆)
transforms schedule S into an identical schedule S′, except for S′

i = Si − ∆ with
∆ > 0. A left shift is local when, in addition, all schedules obtained by LS(S,Ai, ρ)
with 0 < ρ ≤ ∆ are also feasible. We define the set of semi-active and active sched-
ules as follows.

DEFINITION 1.3.– A schedule is semi-active if it admits no feasible activity local left
shift.

From this definition, an integer schedule is semi-active if and only if for each
activity Ai ∈ A, there is no feasible activity left shift of 1 time unit.

DEFINITION 1.4.– A schedule is active if it admits no feasible activity global left shift.

From this definition, an integer schedule is active if and only if for each activity
Ai ∈ A, there is no feasible left shift of ∆ ∈ N

∗ time units. Note that the schedule
displayed in Figure 1.2 is both semi-active and active.

Any solution of SH can obviously be transformed into a semi-active schedule by
applying a series of local left shifts. Any semi-active schedule can in turn be trans-
formed into an active schedule by performing a series of global left shifts. It fol-
lows that the semi-active schedule set Ssa

H and the active schedule set Sa
H are dom-

inant subsets of SH . More precisely we have Sa
H ⊆ Ssa

H ⊆ SH . These sets are
also dominant for the search of a solution of S minimizing a regular objective func-
tion f : R

n+2 → R. A function f is regular if for all S, S′ ∈ R
n+2 such that

S ≤ S′ (where ≤ is meant componentwise), we have f(S) ≤ f(S′). In particu-
lar, the makespan criterion considered in the standard RCPSP corresponds to a regular
objective function.

For practical reasons it can be relevant to consider non-dominant subsets of sched-
ules, i.e. that may exclude the optimal solution. The non-delay scheduling concept is
linked to the requirement that no resource is left idle while it could process an activ-
ity. Although it may appear intuitively as efficient, this scheduling policy may lead
only to sub-optimal solutions. The set of non-delay schedules can be defined by con-
sidering partial left shifts. A partial left shift consists of allowing preemption for the
left-shifted activity. An activity is preemptive if it can be interrupted at any (not neces-
sarily integer) time-point (see Chapter 8). Thus, a partial left shift PLS(S,Ai,∆,Γ)
of an originally non-interrupted activity consists of a left shift of ∆ > 0 time units of
the first Γ > 0 units of the activity.
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DEFINITION 1.5.– A schedule is non-delay if it admits no feasible activity partial left
shift.

For an integer schedule S, whenever a resource is left idle while it could start
processing an activity, it is possible to globally left shift the first unit of this activity
into the idle period. From the above definition, the set Snd

H of semi-active schedules
of makespan not greater than H verifies Snd

H ⊆ Sa
H . The schedule displayed in Figure

1.2 is also a non-delay schedule .

Introduced for the job-shop problem by Baker [BAK 74], similar definitions
of semi-active, active and non-delay schedule sets for the RCPSP can be found in
[SPR 95, NEU 00a].

1.5. Order-based representation of schedules and related dominant schedule sets

From the dominance property of the semi-active schedule set, we may derive a
relevant representation of schedules. Let S be a feasible schedule. For any activity
Aj , if Sj > 0 and if there is no other activity Ai such that Si + pi = Sj , then activity
Aj can be left shifted and the schedule is not semi-active. Hence, in any semi-active
schedule S and for any activity Aj such that Sj > 0, there is an activity Ai such that
Sj = Si+pi. It follows that it is intuitively relevant to represent a left-shifted schedule
by additional precedence constraints. Bartusch et al. [BAR 88] propose to consider
the decomposition of set S of feasible solutions into finitely many subsets, each one
including schedules satisfying the precedence constraints induced by a different strict
order. Formally, let P denote a strict order4 on the set of activities A and let S(P ) =
{S|Sj − Si ≥ pi ∀(Ai, Aj) ∈ E ∪ P} denote the set of (not necessarily feasible)
schedules that verify the precedence constraints given by E and the ones given by P .
S(P ) is a polyhedron and so is S(∅) which is the set of time-feasible schedules. By
definition, a strict order P is time-feasible if S(P ) �= ∅ and is (resource- and time-)
feasible if, in addition, S(P ) ⊆ S. A result established by Bartusch et al. [BAR 88]
states that the set of schedules S is the union of the polyhedra S(P ) for all inclusion-
minimal feasible strict orders P on the set of activities A. In the case of the search
for a feasible solution in SH , or the minimization of a regular objective function in
S, the minimal element of S(P ) dominates the other elements of this set. This is the
point ES(P ) (earliest-start schedule) of S(P ) such that ∀S′ ∈ S(P ), ES(P ) ≤ S′.
By definition, ES(P )i is equal to the length of the longest path from A0 to Ai in
graph G(V,E ∪ P ), each arc (Ai, Aj) ∈ E ∪ P being valuated by pi. It follows that
S(P ) �= ∅ if and only if G(V,E ∪ P ) is acyclic.

The RCPSP can be defined as the search for a feasible strict order P onA such that
ES(P ) is of minimal makespan. Note that P is said to be feasible not only if ES(P )

4. A strict order is an irreflexive and transitive binary relation.
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is feasible, but if and only if all schedules in S(P ) are feasible. We will see how this
type of feasibility can be checked in the next section to specify the strict order-based
RCPSP formulation.

To illustrate these concepts, let us consider schedule S displayed in Figure 1.2 and
strict orders

P1 = {(A2, A1), (A3, A1), (A3, A6), (A6, A7), (A3, A7), (A9, A7), (A9, A8)},
P2 = P1 ∪ {(A3, A8), (A6, A8)} and P3 = P2 \ {A9, A8}.

Note that we have S = ES(P1) = ES(P2) = ES(P3). P1 and P2 are both
feasible strict orders since any schedule in S(P1) or S(P2) is feasible. However, P3

is not a feasible strict order although ES(P3) is feasible. Indeed, consider schedule
S′ = S, except that S9 and S7 are both right shifted by 1 time unit. S′ is in S(P3) but
is not resource-feasible since R2 is oversubscribed at time C9. As stated above, it is
not trivial to check the feasibility of a strict order, which corresponds here to see that
S(P1) ⊆ S and S(P2) ⊆ S. This is linked to the forbidden set concept described in
section 1.6. However, this example shows that the above-defined feasibility condition
of a strict order is not a necessary condition for obtaining a feasible schedule. We can
also remark that the important arcs of a feasible strict order are the ones belonging to
its transitive reduction. Let us consider P ′

1 = P1 \ (A3, A7), the transitive reduction
of P1. We have S(P1) = S(P ′

1). Furthermore, P1 is an inclusion-minimal feasible
strict order: if we remove any arc belonging to the transitive reduction of P1 (i.e. all
arcs except (A3, A7)), ES(P1) becomes unfeasible. P2 is not an inclusion-minimal
feasible strict order since we have P2 ⊂ P1. This shows that several strict orders may
lead to the same earliest-start schedule.

Another important remark is that despite the fact that the semi-active concept is
intuitively related to the strict order concept, each earliest-start schedule with respect
to a given strict order does not necessarily correspond to a semi-active schedule in
the sense of Definition 1.3 as noted by Sprecher et al. [SPR 95]. For instance, let
us define strict order P4 = P1 ∪ {(A10, A8)}. The earliest start schedule ES(P4)
is identical to the one displayed in Figure 1.2 except that the start time of activity
8 is delayed up to the completion time of activity A10. Since a local left shift of
activity A8 is made feasible, schedule ES(P4) is not semi-active. For that reason,
Neumann et al. [NEU 00a] propose additional schedule sets related to the strict order
representation: the quasi-active and the pseudo-active schedule sets. These sets are
based on the order-preserving and order-monotonic left shifts, respectively. These left
shifts are defined by reference to the interval order P (S) induced by a schedule S
where P (S) = {(Ai, Aj) ∈ V 2|Sj ≥ Si + pi}. By definition, P (S) is the inclusion
maximal strict order P such that S ∈ S(P ). Since P (S) is inclusion maximal, each
antichain in graph G(V,E ∪ P (S)) represents a set of activities simultaneously in
process.
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An order-preserving left shift of an activity on S yields a feasible schedule S′

such that P (S) ⊆ P (S′). An order-monotonic left shift of an activity on S yields a
feasible schedule S′ such that P (S) ⊆ P (S′) or P (S′) ⊆ P (S). From this definition
it follows that in an order-monotonic left shift from schedule S, either all chains of
G(V,E∪P (S)) or all antichains are preserved. Consequently, an order-preserving left
shift is also order-monotonic. Moreover, since the initial and final schedules belong
to the same feasible order polyhedron S(P (S)) or S(P (S′)), an order-monotonic left
shift is also a local left shift.

DEFINITION 1.6.– A schedule is quasi-active if it admits no feasible order-preserving
left shift.

From a polyhedral point of view, a schedule S is quasi-active if for each activity
Ai ∈ V , S′ = LS(S,Ai,∆) does not belong to S(P (S)), for all ∆ > 0, i.e. if it is
the minimal point of S(P (S)).

We can show that schedule ES(P4) defined above is quasi-active since any
left shift violates its interval order P (ES(P4)) = {(A1, A8), (A1, A10), (A2, A1),
(A2, A5), (A2, A6), (A2, A7), (A2, A8), (A2, A9),(A2, A10), (A3, A1), (A3, A5),
(A3, A6), (A3, A7), (A3, A8), (A3, A9), (A3, A10), (A4, A7), (A4, A8), (A4, A9),
(A4, A10), (A5, A7), (A5, A8), (A5, A9), (A5, A10), (A6, A7), (A6, A8), (A6, A10),
(A9, A7), (A9, A8), (A9, A10), (A10, A8)}.

Since each semi-active schedule is also a quasi-active schedule, we have the fol-
lowing relations Ssa

H ⊆ S
qa
H ⊆ SH where Sqa

H denote the set of quasi-active schedules.

DEFINITION 1.7.– A schedule is pseudo-active if it admits no feasible order-
monotonic left shift.

A schedule S is pseudo-active if for each activity Ai ∈ V , S′ = LS(S,Ai,∆)
does not belong to S(P ), for all ∆ > 0 and for all strict orders P such that S ∈ S(P ),
i.e. if it is the minimal point of all schedule sets S(P ) containing S.

Schedule ES(P4) is not pseudo-active since a local left shift of 1 unit on activ-
ity A10 is order-monotonic: it removes (10, 8) and (1, 8) from P (ES(P4)) yielding
a necessarily feasible and non-worse schedule. In the terms of Definition 1.7, we
can also remark alternatively that ES(P4) belongs to the polyhedron S(P1) and that
activity A10 can be locally left shifted while obtaining a schedule still in set S(P1).

Based on these definitions, the following theorem can be established.

THEOREM 1.1.– The set of semi-active schedules and the set of pseudo-active sched-
ules are identical for the RCPSP.
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Proof. Since there is no feasible local left shift from a semi-active schedule, the set
of semi-active schedules is included in the set of pseudo-active schedules. We show
that, conversely, there is no feasible local left shift from a pseudo-active schedule.
Suppose that there is a feasible local non-order-monotonic left shift LS(S,Ai,∆)
from a pseudo-active schedule S yielding schedule S′. Since LS(S,Ai,∆) is not
order-monotonic, let (Aj , Ai) ∈ P (S), (Aj , Ai) �∈ P (S′), (Ai, Ak) �∈ P (S) and
(Ai, Ak) ∈ P (S′). Let ∆′ = (Si + pi − Sk)/2. We have ∆ > ∆′ and then
LS(S,Ai,∆′) is feasible and does not create (Ai, Ak) while (Aj , Ai) is either
removed from or kept in P (S′). From S′, we can recursively apply this principle
until obtaining a feasible order-monotonic left shift from S, which contradicts the
hypothesis.

To sum up, we have the following relations between the presented dominant sched-
ule sets: Sa

H ⊆ Ssa
H = Spa

H ⊆ S
qa
H ⊆ SH , where Spa

H denotes the set of pseudo-active
schedules. It should be mentioned that for the RCPSP with minimal and maximal
time lags, an extension of the problem considered in Chapter 11, it generally holds
that Ssa

H ⊂ S
pa
H [NEU 00a].

1.6. Forbidden sets and resource flow network formulations of the RCPSP

From the order-based representation of dominant schedules, we can derive two
alternative formulations of the RCPSP restricting the search space to the dominant set
of quasi-active schedules.

A forbidden set is a set F of activities that cannot be scheduled in parallel in
a feasible solution because of resource limitations due to a resource Rk such that∑

Ai∈F bik > Bk. A forbidden set is minimal if any of its subsets of activities F ′

verifies, ∀Rk ∈ R,
∑

Ai∈F ′ bik ≤ Bk. Let F denote the set of minimal forbidden
sets. No element ofF can be an antichain of G(V,E∪P (S)) for any feasible schedule
S. Consequently, a necessary condition for feasibility of a schedule S is that ∀F ∈ F ,
F 2∩P (S) �= ∅. A forbidden set F such that F 2∩P (S) �= ∅ is said to be broken up. If,
in addition, S ∈ S(∅), we obtain a necessary and sufficient condition. Consequently,
the RCPSP can be reformulated as follows.

DEFINITION 1.8.– The RCPSP aims at finding a strict order P such that G(V,E∪P )
is acyclic, ∀F ∈ F , F 2 ∩ P �= ∅ and ES(P )n+1 is minimal.

The drawback of the preceding formulation is that the number of minimal forbid-
den sets |F| can be extremely large. A significant number of forbidden sets are implic-
itly broken up due to precedence relations. Indeed as soon as there is a path from Ai

to Aj in the precedence graph G(V,E), any precedence-feasible schedule breaks up
any forbidden set including both Ai and Aj . Thus, we do not have to consider such
forbidden sets in F .
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However, it is not trivial to efficiently enumerate all the minimal forbidden sets.
Stork and Uetz propose in [STO 05] an algorithm based on the enumeration of all the
subsets of A through a tree, in which each node, except the root node, is associated
with an activity. In the tree, each branch corresponds to a candidate minimal forbidden
set. The root node has n children corresponding to A1,. . . ,An. Then, each node Ai has
potentially n−i children Ai+1,. . . ,An. A node corresponds to a minimal forbidden set
as soon as the sum of the resource demands over the node itself and all its ascendants
exceeds the capacity of one resource. A node is fathomed as soon as it does not
lead to a minimal forbidden set. Figure 1.4 displays the 24 minimal forbidden sets,
not broken up by precedence relations, obtained through the tree structure for the
illustrative example. Note that because of precedence relations, activity A10 does not
belong to any forbidden set and, consequently, can be ignored for the computation
of the strict orders. If we ignore the precedence relations, the number of minimal
forbidden sets grows up to 97. The reader may verify that both strict orders P1 and
P2 break up the 24 forbidden sets whereas P3 does not (see for instance forbidden
set {A1, A8, A9}). Chapter 7 discusses computational experiments implementing the
Stork and Uetz algorithm to evaluate the hardness of RCPSP instances.
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Figure 1.4. Minimal forbidden sets of the illustrative example

An intermediate order-based representation can be used to avoid the use of F in
the RCPSP formulation. This representation involves the concept of resource flow
decision variables fk

ij for Ai ∈ A ∪ {A0}, for Aj ∈ A ∪ {An+1} and for Rk ∈ R. f
is a resource flow if it verifies the following constraints:

fk
ij ≥ 0 ∀Ai ∈ A ∪ {A0}, ∀Aj ∈ A ∪ {An+1}, ∀Rk ∈ R (1.3)∑
Ai∈A∪{An+1}

fk
0i =

∑
Ai∈A∪{A0}

fk
i(n+1) = Bk ∀Rk ∈ R (1.4)

∑
Aj∈A∪{An+1}

fk
ij =

∑
Aj∈A∪{A0}

fk
ji = bik ∀Ai ∈ A, ∀Rk ∈ R (1.5)
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A resource flow f induces the strict order P (f), the transitive closure of
{(Ai, Aj) ∈ V 2 | fij > 0}. The following lemmas establish the link between flows
and strict orders.

LEMMA 1.1.– If f is a flow and G(V,E ∪ P (f)) is acyclic, then P (f) is a feasible
strict order.

Proof. First, if G(V,E ∪ P (f)) is acyclic, then ES(P (f)) is time feasible. Second,
suppose that a forbidden set F is not broken up by ES(P (f)) for a resource k. Since
all activities of F are simultaneously in process during at least one time period, there
is a total incoming flow of F equal to

∑
i∈F bik > Bk which violates the flow con-

servation conditions.

Consequently, a resource flow such that G(V,E ∪ P (f)) is acyclic is said to be
feasible.

LEMMA 1.2.– For each feasible strict order P , there is a feasible resource flow f such
that ES(P (f)) ≤ ES(P ).

Proof. Let us consider the feasible schedule S = ES(P ) and strict order P (S) ⊇ P
with ES(P (S)) = S. By setting additional constraints fk

ij = 0 for all (Ai, Aj) �∈
P (S) we show that there exists a flow verifying equations (1.3)-(1.5). This amounts
to verifying that there exists a feasible flow in each network Gk(V,E ∪ P (S)), for
each resource Rk ∈ R with minimal and maximal node capacities bik for all activities
Ai ∈ A and node capacities Bk for nodes A0 and An+1. Let us transform this graph
with bounds on node flow into a graph with bounds on arc flows. We split each node
Ai ∈ V into two nodes Ai and A′

i linked by an arc of minimal and maximal capacities
equal to the node capacity. All other arcs have null minimal capacities and infinite
maximal capacities. If we now ignore the maximal capacities, since P (S) is feasible,
there is no A0−A′

n+1 cut of (minimal) capacity greater than Bk. Indeed suppose that
such a cut exists. Then, it includes a set of arcs (i, i′) that represents a non-broken
up forbidden set. Furthermore there is a A0 − A′

n+1 cut (reduced to arc (A0, A
′
0)) of

minimal capacity equal to Bk. Therefore, according to the min-flow max-cut theorem
(see [NEU 03, LEU 04]), we have a minimal flow equal to Bk.

It follows from Lemmas 1.1 and 1.2 that the RCPSP can be defined as follows.

DEFINITION 1.9.– The RCPSP aims at finding a feasible flow f such that
ES(P (f))(n+1) is minimal.

From a feasible flow f , a feasible schedule ES(P (f)) can be computed by longest
path computations in graph G(V,E ∪ P (f)) where all arcs (Ai, Aj) ∈ E ∪ P (f) are
valuated by pj .
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Conversely, Algorithm 2 allows the computation of a feasible flow f from any fea-
sible schedule S in O(n2|R|). The algorithm assumes activities are sorted in increas-
ing order of their completion times. For each activity Ai, the incoming flow is simply
taken from the activities Aj completed before the start time of Ai. At each step of the
algorithm, βik denotes the number of resource Rk units that remain to be sent to Ai.

Algorithm 2 BUILDFLOWFROMSCHEDULE(f, S): generates flow f from schedule S

1: βik ← bik, ∀Ai ∈ A, ∀Rk ∈ R
2: fk

i(n+1) ← bik, ∀Ai ∈ A, ∀Rk ∈ R
3: fk

0(n+1) ← Bk, ∀Rk ∈ R
4: for Ai ∈ A (in increasing order of completion times Ci) do
5: for Aj ∈ A, Aj �= Ai do
6: for Rk ∈ R do
7: if Cj ≤ Si then
8: ρ← min(fk

j(n+1), βik)
9: βik ← βik − ρ

10: fk
j(n+1) ← fk

i(n+1) − ρ

11: fk
ji ← fk

ji + ρ
12: end if
13: end for
14: end for
15: end for

Figure 1.5 gives a flow representing the schedule displayed in Figure 1.2. The
flow values for both resources are displayed near each arc. Dotted arcs are the arcs
representing the additional precedence constraints induced by the flow and used to
define P (f). We observe here that P1 ⊂ P (f), P1 being the inclusion-minimal strict
order defined in section 1.5. Consequently, we can verify on this example that P (f)
breaks up all the forbidden sets.

1.7. A simple method for enumerating a dominant set of quasi-active schedules

A very simple algorithm can be designed to find an optimal solution of a RCPSP
without enumerating the forbidden sets nor using the concept of flows. Conceptually,
it consists of starting with an empty strict order P = ∅. If the time feasible earliest-
start schedule ES(P ) is feasible, which can be checked by Algorithm 1, then it is the
optimal schedule. Otherwise, Algorithm 1 returns a non-broken up minimal forbidden
set F . The optimal solution can be found by recursively applying this procedure for
each (Ai, Aj) ∈ F after adding (Ai, Aj) to P . The recursive algorithm OPTFS is
given as Algorithm 3.

Algorithm 3 can also be used as a one pass method to build a single feasible solu-
tion to the RCPSP. It suffices to select at each step a single arc (Ai, Aj) ∈ F 2 such that
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Figure 1.5. A resource flow for the schedule of Figure 1.2

Algorithm 3 OPTFS(P ): search for an optimal solution to the RCPCP with an initial
set of additional arcs P

1: if S(P ) = ∅ then
2: return +∞
3: else if ES(P ) is resource-feasible (checked by Algorithm 1) then
4: return ES(P )n+1

5: else
6: (Algorithm 1 has returned a violated forbidden set F )
7: return min(Ai,Aj)∈F×F OPTFS(P ∪ {(Ai, Aj)})
8: end if

(Ai, Aj) does not induce a cycle in G(V,E∪P ). An O(|E∪P |) algorithm can be used
to perform a cycle check. Such an arc always exists because if (Ai, Aj) ∈ F 2 induces
a cycle, (Aj , Ai) does not induce a cycle and also breaks up the forbidden set. Since
an arc is added at each iteration, the algorithms gives a feasible solution in n(n−1)/2
iterations. The obtained schedule is quasi-active since it is equal to ES(P ). It follows
that Algorithm 3 computes a set of dominant quasi-active schedules. In the algorithm
we refer to P as a set of additional arcs and not as a strict order for practical reasons.
As stated earlier, the relevant elements of a strict order are the arcs belonging to the
transitive closure. When adding arc (Ai, Aj) to P at step 7, computing the transitive
closure of P to keep the transitivity property would be an unnecessary computational
effort.




