
Preface

This monograph is the outcome of our work on probabilistic combinatorial optimiza-
tion since 1994. The first time we heard about it, it seemed to us to be a quite strange
scientific area, mainly because randomness in graphs is traditionally expressed by
considering probabilities on the edges rather than on the vertices. This strangeness
was our first motivation to deal with probabilistic combinatorial optimization. As our
study progressed, we have discovered nice mathematical problems, connections with
other domains of combinatorial optimization and of theoretical computer science, as
well as powerful ways to model real-world situations in terms of graphs, by represent-
ing reality much more faithfully than if we do not use probabilities on the basic data
describing them, i.e., the vertices.

What is probabilistic combinatorial optimization? Basically, it is a way to deal
with aspects of robustness in combinatorial optimization. The basic problematic is the
following. We are given a graph (let us denote it by G(V,E), where V is the set of its
points, called vertices, and E is a set of straight lines, called edges, linking some pairs
of vertices in V ), on which we have to solve some optimization problem Π. But, for
some reasons depending on the reality modelled by G, Π is only going to be solved
for some subgraph G′ of G (determined by the vertices that will finally be present)
rather than for the whole of G. The measure of how likely it is that a vertex vi ∈ V
will belong to G′ (i.e., will be present for the final optimization) is expressed by a
probability pi associated with vi. How we can proceed in order to solve Π under this
kind of uncertainty?

A first very natural idea that comes to mind is that one waits until G′ is specified
(i.e., it is present and ready for optimization) and, at this time, one solves Π in G′.
This is what is called re-optimization. But what if there remains very little time for
such a computation? We arrive here at the basic problematic of the book. If there is no
time for re-optimization, another way to proceed is the following. One solves Π in the
whole of G in order to get a feasible solution (denoted by S), called a priori solution,
which will serve her/him as a kind of benchmark for the solution on the effectively
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present subgraph G′. One has also to be provided with an algorithm that modifies S
in order to fit G′. This algorithm is called modification strategy (let us denote it by M).
The objective now becomes to compute an a priori solution that, when modified by M,
remains “good” for any subgraph of G (if this subgraph is the one where Π will be
finally solved). This amounts to computing a solution that optimizes a kind of expec-
tation of the size of the modification of S over all the possible subgraphs of G, i.e.,
the sum of the products of the probability that G′ is the finally present graph multi-
plied by the value of the modification of S in order to fit G′ over any subgraph G′

of G. This expectation, depending on both the instance of the deterministic prob-
lem Π, the vertex-probabilities, and the modification strategy adopted, will be called
the functional. Obviously, the presence-probability of G′ is the probability that all of
its vertices are present.

Seen in this way, the probabilistic version PΠ of a (deterministic) combinatorial
optimization problem Π becomes another equally deterministic problem Π′, the solu-
tions of which have the same feasibility constraints as those of Π but with a different
objective function where vertex-probabilities intervene. In this sense, probabilistic
combinatorial optimization is very close to what in the last couple of years has been
called “one stage optimisation under independent decision models”, an area very pop-
ular in the stochastic optimization community.

What are the main mathematical problems dealing with probabilistic consideration
of a problem Π in the sense discussed above? We can identify at least five interesting
mathematical and computational problems dealing with probabilistic combinatorial
optimization:

1) write the functional down in an analytical closed form;
2) if such an expression of the functional is possible, prove that its value is poly-

nomially computable (this amounts to proving that the modified problem Π′ belongs
to NP);

3) determine the complexity of the computation of the optimal a priori solution,
i.e., of the solution optimizing the functional (in other words, determine the computa-
tional complexity of Π′);

4) if Π′ is NP-hard, study polynomial approximation issues;
5) always, under the hypothesis of the NP-hardness of Π′, determine its complex-

ity in the special cases where Π is polynomial, and in the case of NP-hardness, study
approximation issues.

Let us note that, although curious, point 2 in the above list in neither trivial nor sense-
less. Simply consider that the summation for the functional includes, in a graph of
order n, 2n terms (one for each subgraph of G). So, polynomiality of the computation
of the functional is, in general, not immediate.
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Dealing with the contents of the book, in Chapter 1 probabilistic combinatorial op-
timization is formally introduced and some old relative results are quickly presented.

The rest of the book is subdivided into two parts. The first one (Part I) is more
computational, while the second (Part II) is rather “structural”. In Part I, after for-
mally introducing probabilistic combinatorial optimization and presenting some older
results (Chapter 1), we deal with probabilistic versions of four paradigmatic combi-
natorial problems, namely, PROBABILISTIC MAX INDEPENDENT SET, PROBABILIS-
TIC MIN VERTEX COVER, PROBABILISTIC LONGEST PATH and PROBABILISTIC MIN
COLORING (Chapters 2, 3, 4 and 5, respectively). For any of them, we try, more or
less, to solve the five types of problems just mentioned.

As the reader will see in what follows, even if, mainly in Chapters 2 and 3, several
modification strategies are used and analyzed, the strategy that comes back for all
the problems covered is the one consisting of moving absent vertices out of the a
priori solution (it is denoted by MS for the rest of the book). Such a strategy is very
quick, simple and intuitive but it does not always produce feasible solutions for any of
the possible subgraphs (i.e., it is not always feasible). For instance, if it is feasible for
PROBABILISTIC MAX INDEPENDENT SET, PROBABILISTIC MIN VERTEX COVER and
PROBABILISTIC MIN COLORING, this is not the case for PROBABILISTIC LONGEST
PATH, unless particular structure is assumed for the input graph. So, in Part II, we
restrict ourselves to this particular strategy and assume that either MS is feasible, or, in
case of unfeasibility, very little additional work is required in order to achieve feasible
solutions. Then, for large classes of problems (e.g., problems where feasible solutions
are subsets of the initial vertex-set or edge-set satisfying particular properties, such as
stability, etc.), we investigate relations between these problems and their probabilistic
counterparts (under MS). Such relations very frequently derive answers to the above
mentioned five types of problems. Chapter 7 goes along the same lines as Chapter 6.
We present a small compendium of probabilistic graph-problems (under MS). More
precisely we revisit the most well-known and well-studied graph-problems and we
investigate if strategy MS is feasible for any of them. For the problems for which this
statement holds, we express the functional associated with it and, when possible, we
characterize the optimal a priori solution and the complexity of its computation.

The book should be considered to be a monograph as in general it presents the
work of its authors on probabilistic combinatorial optimization graph-problems. Nev-
ertheless, we think that when the interested readers finish reading, they will be per-
fectly aware of the principles and the main issues of the whole subject area. Moreover,
the book aims at being a self-contained work, requiring only some mathematical ma-
turity and some knowledge about complexity and approximation theoretic notions.
For help, some appendices have been added, dealing, on the one hand, with some
mathematical preliminaries: on sets, relations and functions, on basic concepts from
graph-theory and on some elements from discrete probabilities and, on the other hand,
with elements of the complexity and the polynomial approximation theory: notorious
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complexity classes, reductions and NP-completeness and basics about the polynomial
approximation of NP-hard problems. We hope that with all that, the reader will be
able to read the book without much preliminary effort. Let us finally note that, for
simplifying reading of the book, technical proofs are placed at the end of each chap-
ter.

As we have mentioned in the beginning of this preface, we have worked in this
domain since 1994. During all these years many colleagues have read, commented,
improved and contributed to the topics of the book. In particular, we wish to thank
Bruno Escoffier, Federico Della Croce and Christophe Picouleau for having working
with, and encouraged us to write this book. The second author warmly thanks Elias
Koutsoupias and Vassilis Zissimopoulos for frequent invitations to the University of
Athens, allowing full-time work on the book, and for very fruitful discussions. Many
thanks to Stratos Paschos for valuable help on LATEX.

Tender and grateful thanks to our families for generous and plentiful support and
encouragement during the task.

Finally, it is always a pleasure to work with Chantal and Sami Menasce, Jon Lloyd
and their colleagues at ISTE.
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