
Chapter 5

Search Algorithms

From a general point of view, a search of a graph, or a digraph, is an
algorithm which makes it possible to search the arcs of the graph and to visit
its vertices with a special purpose in mind. This chapter presents one of the
most classic of these searches, called a depth-first search (often abbreviated
dfs). This type of tree-search will be completed in Chapter 6 by another
classic tree-search, the breadth-first search.

In applications which are modeled by an arborescence, this search
technique is called backtracking, and can be used to solve a wide variety
of problems in operations research and artificial intelligence.

5.1 Depth-first search of an arborescence

From an algorithmic viewpoint, the recursive form is the most natural
and most efficient to express this search. The following procedure expresses
the depth-first search of the subarborescence of arborescence T , of root v.
We designate as children(v) the set of the children of vertex parameter v.

procedure dfs arbo recu(T,v);
begin

for u in children(v) loop
dfs arbo recu(T,u); -- recursive call

end loop;
end dfs arbo recu;

98 Graph Theory and Applications

The complete arborescence is searched by a call of this recursive
procedure on the root r of the arborescence T , that is, the call:
dfs arbo recu(T,r).

In practice, as in the applications we will see later, an arborescence
is usually given by what may be called “navigation primitives”, meaning
subprograms which allow a child or a sibling of a given vertex to be reached.
In order to be more specific, the children of the vertex are usually given in
a particular order defined by a list. Remember that it is then an ordered
arborescence, and that we can refer to the first child of a vertex when
this vertex is not a leaf, and to the following sibling of a vertex if it has
one. We express the preceding search with the following primitives in which
the names indicate what they are for: exists sibling(v) is a Boolean
function which returns true or false depending on whether the vertex
parameter v has or has not a child in the arborescence; first child(v)
returns the first sibling, when it exists. We similarly define the primitive
exists following sibling(v), which returns true or false depending on
whether or not there is a following sibling of the vertex parameter v, and
following sibling(v) which returns the first following sibling (the one
just following), when it exists.

procedure dfs arbo recu(T,v);
begin

if exists child(v) then
u:= first child(v);
dfs arbo recu(T,u); -- recursive call
while exists following sibling(t) loop
u:= following sibling(u);
dfs arbo recu(T,u); -- recursive call

end loop;
end if;

end dfs arbo recu;

5.1.1 Iterative form

It is interesting to eliminate the recursion in the preceding algorithm to
follow the search strategy step by step. One of the possible iterative forms is
given below. We could have used a “parent” primitive of the arborescence,
which would have made it possible to avoid having to use a stack. In
fact, in practice it is easier to do without this primitive by using a stack.

Search Algorithms 99

In addition, this stack recalls the stack used by the computer system for
the management of recursive calls and recursive returns during execution.
The stack primitives used here are classic. Let us specify that pop(S)
removes the element which is at the top of stack S, without returning it, and
top stack(S) returns the element which is at the top of stack S, without
removing it from S. Variable vertex v is local. It represents the current vertex
of the search. Parameter r represents the root of arborescence T, also passed
as a parameter of the procedure. Remember that the instruction exit causes
exit from the current loop.

procedure dfs arbo ite(T,r);
begin

push(S,r);
v:= r;
loop

while exits child(v) loop
v:= first child(v);
push(S,v);

end loop;
-- exits child(v) false
while v �= r and then not exists following sibling(v) loop
pop(S);
v:= top stack(S);

end loop;
-- v = r or exists following sibling(v) true
exit when v = r;
pop(S);
v:= following sibling(v);
push(S,v);

end loop;
pop(S);

end dfs arbo ite;

Notes. 1) As formulated, with the and then (the second condition is tested
only if the first is verified), the exit condition of the second while loop
ensures that primitive exists following sibling will not be called on root
r, which makes it possible to avoid having to plan this particular case for
this primitive. This case is in fact useless since the root of an arborescence
never has a sibling.

100 Graph Theory and Applications

2) Stack S is initially assumed to be empty. It is then also empty at the
end of the execution. Indeed, the last pop, after the main loop, exits vertex
r, which is the first and last vertex in the stack.

The strategy of this search may be described in natural language by
following the moves of the current vertex v (moves defined by the successive
assignment of the variable v in the algorithm). Initially, v is in r. Then at
each step of the search the current vertex v goes: to the first child of v if
v has a child, to the following sibling of v if v has no child or v no longer
has any child left unconsidered but has a following sibling, and finally, v
goes to the parent of v if v no longer has any child or following sibling left
unconsidered but has a parent, that is if v �= r. The search ends when v is
back to r. This description reveals the priority for vertex v to move first to a
child, what can be called the “depth-first descent”, and explains the source
of the terminology “depth-first search”. The given algorithmic expression
shows this strategy through the layout of the loops. The first interior loop
(while) corresponds to the onward search, the second interior loop (while)
corresponds to returning to the parent. The exterior loop (loop) corresponds
to a move toward the following sibling, between the onward and upward
searches expressed by the two preceding loops.

5.1.2 Visits to the vertices

As we will see, the use of the search is made through some timely
appropriate actions while visiting the various vertices of the arborescence.
It is possible to specify these visits in terms of previsits or postvisits, and
equally to spot the visits through the leaves of the arborescence, which
are often important. This is done as commentaries of the following version
of procedure dfs arbo ite, which completes the iterative version given
earlier. These visits are easy to spot in the recursive version (procedure
dfs arbo recu), because each previsit corresponds to a push and each
postvisit corresponds to a pop. So, there is a previsit of the current vertex
before a recursive call on this vertex and there is a postvisit at the time of
the recursive return. This corresponds to the iterative version since, in the
management of the recursion, pushes correspond to recursive calls and pops
to recursive returns (except for the root).

Search Algorithms 101

procedure dfs arbo ite(T,r);

begin
-- previsit of r

push(P,r);

v:= r;

loop
while exists child(v) loop
v:= first child(v);

-- previsit of v

push(S,v);

end loop;
-- v is a leaf
while v �= r and then not exists following sibling(v) loop
pop(S);

-- postvisit of v

v:= top stack(S);

end loop;
-- v = r or exists following sibling(v) true

exit when v = r;

pop(S);

-- postvisit of v

s:= following sibling(v);

-- previsit of v

push(S,v);

end loop;
pop(S);

-- postvisit of v

end dfs arbo ite;

The numbering defined by the previsits is classically called the preorder
numbering of the vertices of the arborescence, and the numbering defined
by the postvisits the postorder numbering. Figure 5.1 gives an example
of a depth-first search of an arborescence, with preorder and postorder
numbering of the vertices.

102 Graph Theory and Applications

9

8564

3 2

r
1

2
a

b

c
7

f
8 7

9 6

d

4 1
g

e
5 3

h

Figure 5.1. To the left of each vertex is given its preorder number and to
the right, in bold type, its postorder number

5.1.3 Justification

It is easy to be convinced that this algorithm, under any of the versions
presented, really performs a search of the arborescence in the sense given
above. Indeed, through systematic consideration for each vertex of all its
children, each arc is considered and each vertex is visited.

5.1.4 Complexity

Time complexity for this search, as a function of the number of vertices
of the arborescence, is linear. Effectively, for each vertex its children are
considered only once as children of this vertex. The total number of
elementary operations is thus of the order of the sum of the outdegrees of the
vertices, that is of the order of the number, m, of arcs of the arborescence.
Since m = n − 1, where n is the number of vertices, the complexity is
O(n). However, if we measure the size of the arborescence by its depth
d (the greatest length of a path from the root to a leaf), rather than
by the number of vertices, which is much more relevant in applications,
the search complexity becomes exponential. For example, the complexity
becomes O(kd) for an arborescence for which any non-leaf vertex has k
children and any leaf is of depth d. This complexity is in fact proportional
to the number of vertices visited. We will see later the concrete consequences
of this exponential complexity.

Search Algorithms 103

5.2 Optimization of a sequence of decisions

Let us consider the problem of having to choose one decision among
several possibilities at each step of a process. Some states of the process,
called terminal, no longer require a decision and can be assessed with a gain
that is an integer or real number, which may be positive, negative or zero.
The problem, then, is to find a decision sequence which leads from a given
initial state to a terminal state with the greatest possible gain.

Modeling this problem by an arborescence is easy: each vertex represents
a state, the root represents the initial state, each arc corresponds to a
possible decision leading from one state to another. The leaves are the final
states and they are assigned to values corresponding to the gains. We have
to determine in this arborescence a path from the root to a leaf which has
the greatest possible gain value.

As formulated, and with what has been developed above, there is a
direct solution to this problem: a depth-first search of the arborescence,
recording the values of leaves as they are visited, should bring about a
solution. In practice, things are less simple. On the one hand, searching
a whole arborescence may be costly in time and frequently even impossible
to complete within a reasonable human time scale. On the other hand, the
arborescence associated with the problem is not fully known from the start
and has to be built, which is not crippling but requires some technical work.
Let us illustrate this with a classic algorithmic problem.

5.2.1 The eight queens problem

This is an old puzzle, already known in the 19th century. The aim is
to put eight queens on a chessboard so that none of them is able to take
another, according to chess rules. Recall that the queen attacks any piece
that is in the same row, column or diagonal. It is clear that it is impossible
to place more than eight queens. The question therefore is how to find out
if it is possible with eight queens.

It is necessary to define the arborescence associated with the problem
because several possibilities are conceivable. Since there must not be more
than one queen per row, one natural way to proceed is to put one queen
per row, row after row, starting from row one (supposing that the rows are
numbered from 1 to 8, for example from bottom to top). The root of the

104 Graph Theory and Applications

Figure 5.2. A solution to the eight queens problem

arborescence is the empty chessboard. The children of the root correspond
to the eight ways to place a queen on the first row. The children of the
children correspond to the ways of placing a queen on the second row out
of reach of the preceding queen, and so on for all the following rows. A leaf
of the arborescence corresponds to a state of the chessboard where some
queens are already placed on a number of first rows in such a way that it is
impossible to add another one on the following row, either because there is
in fact no following row or because all the squares of the following row are
under the threat of the previously placed queens. The gain associated with
an arborescence leaf is the number of queens placed on the board, a number
which corresponds to the depth of the leaf in the arborescence. A solution
is reached when eight queens are placed, that is for a leaf of depth 8, which
is the greatest possible gain.

For the search application to this arborescence, the real work is
in defining the arborescence primitives, exits child, first child,
exists following sibling, following sibling. For example, the
function exits child must return true or false, depending on whether
there is or is not in the row following the current one a free square where
a queen can be placed, taking into account the ones already placed. The
function first child, in the case where exits child has returned true for
the vertex under consideration, must return the first following free square,
deciding, for example, to go from left to right on the squares of each row.
The complete algorithmic resolution of this problem is proposed as an
exercise at the end of this chapter.

Search Algorithms 105

5.2.2 Application to game theory: finding a winning strategy

The games under consideration here are two-player games, with complete
information (each player has complete knowledge of the entire game),
hazardless (no throwing dice or drawing cards for example) and with zero
sum (the sum of the gains of the two players is zero). Chess is a typical
example. The player who starts is denoted by A and the other one by B.
Let us consider only simple gains, that is: 1 if A wins (then B loses), -1 if
A loses (and B wins), 0 if the game is tied. For this type of game, there is
always what is called a winning strategy, that is a way of playing for one
of the players which, regardless of the moves of the opponent, ensures that
he or she does not lose. This means A has a gain ≥ 0 (if A has a winning
strategy), B has a gain ≤ 0 (if B has a winning strategy). It is possible to
prove that there is always a winning strategy, but it is not possible to say a
priori which of the players has it. It depends on the game, and both cases
really happen.

5.2.3 Associated arborescence

We are going to show how a winning strategy can be found
algorithmically, which will constitute a constructive proof of its existence.
To do this, let us associate an arborescence with the game in order to apply
a search to it. Its root is of course the initial state of the game. Its children
are all the states of games obtained after the first move of player A, the
children of the children all the states obtained after the move then made by
B, and so on, alternating moves by A and B. The leaves are states of the
game obtained by a sequence of moves, which then represent a match, and
after which there are no more moves, the game being over. For each leaf, the
gain is assessed as defined above: 1 if A wins, −1 if B wins and 0 for a tie.

Note. A given state of the game may appear several times as a vertex
of the arborescence. This is inherent to this model of the game, since a
given situation in a game can generally be obtained by different sequences
of moves.

106 Graph Theory and Applications

5.2.4 Example

The arborescence of a game is soon enormous (the preceding remarks
contribute to that effect)! To present a case which remains accessible, we
are going to consider the game of Nim. In its classic form (popularized
by a French film in the 1960s), there are four piles of matches containing
respectively one, three, five, and seven matches. In turn, each player removes
as many matches (but at least one) as he or she wishes, from only one pile.
The player removing the last match has lost. We will limit ourselves to a
reduced version of this game with only two piles of one and three matches.
Its arborescence is fully represented in Figure 5.3. Each state of the game
is coded by the data of the number of matches in each pile separated by
a hyphen, 1-3 for the initial state for example. Note that despite the great
simplicity of this game, its arborescence is already a bit complicated.

1

0 − 3

0 − 0

0 − 0

0 − 1 0 − 0

1 − 1

1 − 00 − 1

0 − 20 − 2 0 − 1

0 − 0

0 − 0

0 − 1

0 − 0 0 − 0

0 − 0

1 − 3

1

1

1

1−1 −1
1

1

−1

1

−1−1

1 1

−1 −1 −1

1 − 2

0 − 0

0 − 0

−1 1

1

−1

1 − 0

1 − 1

1 − 0

0 − 1

0 − 0

0 − 0

1 − 0

1

−1−1

1

−1

1

B

A

B

A

Figure 5.3. The arborescence of the 1-3 Nim game, gains brought back by
application of the minimax algorithm: winning strategy (bold arcs), prunings
(bold lines)

5.2.5 The minimax algorithm

Finding a winning strategy is harder than the simple optimization of a
sequence of decisions as described above. Indeed, there is an antagonistic
pursuit between the players: the one who starts is looking for a maximum
gain, since it is directly his gain. The other is trying to minimize the final gain
since his/her gain is the opposite. The essential principle of the algorithm
is that of the mounting of the gains of the leaves, values which are known,
towards the root, where the returned value will indicate which of the players

Search Algorithms 107

is benefiting from a winning strategy. In general, the gain returned for a
vertex of the arborescence will equal 1 if it is a winning position for player
A, -1 if it is a losing position for A (and therefore winning for B), 0 if it is not
a winning position for either of the players. This last situation is that of a
tied game, possible for each of the two players if no “mistake” is made, that
is the case when each player avoids, as is possible, making a move leading to
a winning situation for his opponent. In this particular case, we can say that
each player has a winning strategy in the sense defined above (a strategy
which would be better called a “non-losing” strategy).

The principle described indicates by itself how to return the gains. Let
us take for example the case of a state of the game where it is A’s turn,
and let us suppose that the gains of all the children of this vertex in the
arborescence have already been determined. Then the rule to apply is that
the gain returned to the vertex under consideration is the maximum of the
gains of its children. That will also define what is the “best move” for A to
make at this moment. A similar formula applies in the case where it is B’s
turn to play, with minimum instead of maximum. Thus, from bottom to top,
that is, from leaves to the root, it is possible to find the values of the gains
returned for each vertex of the arborescence and finally for the root. This
technique of alternately returning a minimum and a maximum explains the
name minimax given to this algorithm.

5.2.6 Implementation

A depth-first search of the arborescence of a game is perfectly adapted
to the implementation of this technique of gain return. At each postvisit
of a vertex the value of its parent is updated by max or min depending on
whether it is a move by A or B which is returned. Indeed, at this point all
the children of the vertex under consideration have known gain values.

In order to avoid singling out the postvisit case of the first child of a
vertex, a point at which the parent does not yet have a returned value, from
the case of the following children, that is to be able to apply one single
formula, we initialize in previsit the value of each vertex in the following
manner: -1 if it is A’s turn, +1 if it is B’s turn. These values are chosen in
such a way that the value returned the first time will be taken automatically.
For example, at the first return of the child of a vertex representing a game
situation where A is about to play, the maximum will be taken between -1
and a gain g returned equal to -1, +1 or 0. Therefore, the taken gain will

108 Graph Theory and Applications

necessarily be g. The same result can be obtained for B with a minimum
between +1 and a gain equal to -1, +1 or 0.

5.2.7 In concrete terms

To effectively find a winning strategy, it is necessary to keep a record of
the arc which gave the best return gain so far for each vertex throughout the
search. Figure 5.3 illustrates this method. In concrete terms, the application
of this minimax algorithm to a realistic game is impossible to do within a
reasonable time period, so enormous is the arborescence to be searched. For
example, it is impossible to search the entire chess game arborescence (the
number of leaves of its arborescence can be evaluated to be 2050). Even if
it was possible, the storage of the information for a winning strategy would
create problems. Such a strategy must give the right answers for all the
possible moves of the opponent. We are facing the “combinatorial explosion”
phenomenon, in this case the exponential growth of cases to contemplate.

5.2.8 Pruning

In order to calculate the gain returned to the root, it is possible to reduce
the search by pruning, that is to “prune” the arborescence. This technique
does not modify the exponential nature of the search. Figure 5.3 shows
pruning cases which can be understood on their own. For example, when
value 1 is returned to vertex 0-2, which is at depth 2 at the bottom left,
from vertex 0-1, it is useless to explore the other branch leading to vertex
0-0 since the returned value 1 is the best possible for player A, whose turn
it is in this situation. Indeed, whatever the value returned from vertex 0-0,
it will not modify the value previously returned in vertex 0-1.

Even though the minimax algorithm does not allow a global exhaustive
search, it is nevertheless useful for a local search, that is a search which
does not necessarily continue until the end of the game but limits itself,
for example, to a 10-move exploration depth from the situation analyzed.
Finding the best move possible is then done on the basis of evaluation
functions which quantitatively assess game situations at the limit of the
exploration, situations which are not yet end game and thus without known
gains a priori. This technique is used by chess game software; their high
level of performance is well known and is due essentially to the quality of
these evaluation functions which contain in fact all the human “expertise”
in this matter.

Search Algorithms 109

5.3 Depth-first search of a digraph

The digraph G searched here is assumed to be strict (there are no parallel
arcs, no loops, and any arc is identified by the ordered pair of its ends). The
digraph is also supposed to be given by linked lists of successors, and in the
following algorithmic expressions suc(v) designates a pointer to an element
of the list of vertex v, initially to the first element of this list. Each of these
elements is a record1 which contains: suc(v).vertex the next successor of v
to be examined, suc(v).next a pointer to the following element of the list,
equal to null if there are no more elements in it. When a successor has been
read, suc(v) must be incremented, that is moved to point to the following
element of the list of successors. This is what is produced by the assignment
suc(s):= suc(s).next. The array visited, indexed on the vertices of the
digraph, is supposed initialized to the value false for each vertex.

In a recursive form, we first have the following procedure, with parameter
G as the digraph to be searched and v as the initial vertex of the search:

procedure dfs recu(G,v);
begin

visited(v):= true;
while suc(v) �= null loop

u:= suc(v).vertex; suc(v):= suc(v).next;
if not visited(u) then
-- previsit of u
dfs recu(G,u); -- recursive call
-- postvisit of u

else
-- revisit of u
null;

end if;
end loop;

end dfs recu;

The main procedure for a search starting at a given vertex r of G, which
is the vertex origin of the search and which is passed as a parameter, is
written as follows:
1record in Ada, struct in C.

110 Graph Theory and Applications

procedure dfs(G,r);
begin

-- previsit of r
dfs recu(G,r);
-- postvisit of r

end dfs;

5.3.1 Comments

We have first given the recursive form, which is more concise. It is
useful to locate all the different types of visits at the vertices in this
algorithm, because it will be of the greatest use in the application of
this search. The previsits and the postvisits, which correspond, as for the
above arborescence, respectively to recursive calls and recursive returns, are
mentioned as comments. The case of the revisit of a vertex is new, compared
with the case of the arborescence. It corresponds to the case of a vertex which
has already been visited and is encountered again as successor to the current
vertex (a case which may not happen for an arborescence since there is only
one path from one vertex to another). This case appears in the else of the if
and since there is then nothing to do, this is made explicit by the instruction
null.2

The following second form of the depth search is iterative and
corresponds to recursion elimination of the preceding one. It is therefore
the same search strategy. It is instructive to follow the evolution of the
stack in this search, in particular for previsits and postvisits which, as in the
arborescence case, correspond respectively to pushes and pops. The array
visited is still assumed to be initialized to the value false for each vertex
of the digraph.

procedure dfs ite(G,r);
begin

-- previsit of r
visited(r):= true;
push(S,r); v:= r;
loop

while suc(v) �= null loop

2Be sure to distinguish the statement null, as here, and the value null of a pointer which
points to nothing, as seen above.

Search Algorithms 111

u:= suc(v).vertex; suc(v):= suc(v).next;
if not visited(u) then

-- previsit of u
visited(u):= true;
push(S,u); v:= u;

else
-- revisit of u
null;

end if;
end loop;
pop(S);
exit when empty stack(S);
-- postvisit of v
v:= top(S);

end loop;
-- postvisit of r

end dfs ite;

Figure 5.4 gives an example of an application.

2

4

5

r = 1

3

10

9

8
76

Figure 5.4. Beginning of a depth-first search of a digraph starting at vertex
r = 1. The visits are: previsits of 1, 3, 9, 10, 7, revisit of 1, previsit of 8,
revisits of 1, 3, 9, 10, postvisit of 8, etc. The arcs in bold are those of previsits
(for the complete search). They define in the digraph an arborescence of root
r = 1, called Trémaux’s arborescence. Note that vertex 4 will not be visited
by the search

The sequence of vertices which are in a stack at a given time defines a
path in the digraph, called the current (directed) path of the search, the last
vertex being the current vertex, the one where the search is at that time.

112 Graph Theory and Applications

5.3.2 Justification

Proposition 5.1. During a depth-first search of a strict digraph, any vertex
accessible by a path from the initial vertex origin r of the search is visited,
with a previsit, then a postvisit, and eventually also a revisit.

Proof. This is easy to justify by reasoning step by step along the vertices
from a path of r to the vertex under consideration.

Note that the vertices which are unreachable by a path from r are not
visited at all. We will remedy this later with an extended version of the
search.

There is an amusing illustration of this algorithm in the study of mazes,
the different ways to go through them and, above all, to come out of them! It
is in this context that this algorithm has been known for a long time under
the name of Trémaux’s algorithm, named after the author of studies on this
subject in the 19th century, long before the theory of the algorithmic graph.
Let us imagine that the digraph represents a maze. The vertices represent the
crossroads and the arcs the corridors (assumed to be one way). The preceding
search defines a systematic exploration strategy: after the entrance, we take
a new corridor as long as there is one to take and it leads to a crossroads
not yet visited. If no such corridor is available, and if we are back at the
entrance to the maze, we stop; if not, we go back to the crossroad where we
were before we arrived for the first time where we are now. Of course, to
apply this strategy we have to mark one by one every corridor and crossroads
followed. There is a famous precedent in Greek mythology with Theseus, who
had to find the Minotaur in the labyrinth, to kill him, and then rediscover
the entrance to the labyrinth! Ariane was waiting at this entrance with a
ball of thread which Theseus unwound during his search. This “Ariane’s
thread” allowed him to identify the locations previously visited, and, more
importantly, to recover the entrance to the labyrinth at the end of his
mission. It is interesting to note that the thread corresponds to the state
of the stack of the preceding algorithm. More specifically, at each time, the
sequence of the crossroads crossed by the thread corresponds, in the digraph,
to the sequence of the vertices in the stack (supposing that Theseus was
rewinding the thread when he was retracing his steps in a corridor he had
already searched).

Search Algorithms 113

5.3.3 Complexity

Let us refer to the second iterative version of the algorithm. The main
loop is executed, for each vertex v considered, a number of times equal to the
outdegree of v, that is d+

G(v). Each vertex of the digraph is thus considered
once. The total number of elementary operations is thus proportional to the
sum of the outdegrees of the vertices visited, a sum which is less than or
equal to the number m of arcs of the digraph. The complexity of the search
itself is thus O(m). To this must be added the complexity required by the
initialization of the array visited, that is O(n). In total, the complexity is
thus O(max(n,m)). The depth-first search algorithm is linear.

We can be even more specific by saying that the search requires a time
proportional to the size of what it is visiting (which is not necessarily all of
the digraph).

5.3.4 Extended depth-first search

As we have seen, the preceding search only visits the vertices which can
be reached by a path from the initial vertex origin r. When we want to
visit all the vertices of the digraph, we have to start a new search from a
vertex not yet visited, as long as one exists. This search, called an extended
search, ends when all vertices of the digraph have been visited. This is what
is done by the following algorithm, in which it is important to note that
the array visited, still supposed initialized to false for each vertex, is global
with respect to the different search procedures started. This means that it
is not reinitialized between successive searches. A vertex is marked visited
only once, by one of the searches. In the following expression of the extended
depth-first search, the vertices are supposed numbered from 1 to n.

procedure dfs ext(G);
begin

r:= 1;
loop

dfs ite(G,r);
-- looking for a non visited vertex
while r < n and visited(r) loop
r:= r + 1;

end loop
-- r = n or visited(r) false

114 Graph Theory and Applications

exit when visited(r);
end loop;

end dfs ext;

G

search 1

search 2

search 4

search 3

Figure 5.5. Schema of the successive searches of an extended search

Note. This procedure calls upon the procedure dfs ite but the recursive
procedure dfs recu would work just as well.

5.3.5 Justification

Proposition 5.2. During an extended depth-first search of a strict digraph,
each vertex is visited, in a previsit, then a postvisit, eventually also in a
revisit.

Proof. This can be easily justified by observing that any vertex ends up
being visited because of the conception of the algorithm itself.

We can complete the preceding proposition by saying that if the digraph
being searched is strict, any arc (u, v) is considered during the search: either
during the previsit of v from u, (u, v) is then called a previsit arc, or during
a revisit of v from u, (v, u) is then called a revisit arc. Any arc of the digraph
is either a previsit arc or a revisit arc. Note that if (u, v) is a revisit arc, v
may have already been visited in a search previous to the one during which
u is visited.

Search Algorithms 115

5.3.6 Complexity

The various simple searches which constitute the extended one do not
overlap, in the sense that a vertex previsited in one of them will not be
previsited again in another (let us remember that the array visited is
global), it can only possibly be revisited. Each search is finite and there is
a finite number of searches (at the most equal to the number of vertices, in
the case of a digraph without arcs). In addition, as above, each successor
of a vertex is considered only once, even when it is a vertex visited in one
of the searches with a successor visited in another search. In fact, as we
already noted, each search only requires a time proportional to the size of
what it is searching, and the total is proportional to the size of the digraph,
max(n,m), thus yielding a linear complexity.

An essential point of the depth-first search, extended or not, is that when
a vertex is postvisited all its successors have been visited, that is previsited
from that vertex or revisited (and so previously previsited from another
vertex). This can be clearly seen in particular with the recursive form of
the simple (not extended) search. We can also specify that when a vertex
is revisited, it has necessarily been previsited (since it is a revisit), but it
may or may not be postvisited, that is popped or not from the stack of
the iterative expression. This point will be useful for recognizing digraphs
without circuits.

5.3.7 Application to acyclic numbering

Proposition 5.3. (1) A strict digraph G is without a circuit if and only
if during an extended depth-first search of this digraph, when a vertex is
revisited, it has already been postvisited.

(2) If digraph G is without a circuit, the postorder of the vertices in an
extended depth-first search of this digraph is the reverse of that of an acyclic
numbering.

Proof. Let us suppose that during an extended depth-first search of digraph
G, there is a vertex u which is the successor of current vertex v and which
is revisited but not yet postvisited. Vertex u is thus in the stack at that
moment, with v, which is at the top of it, and the sequence of the vertices
from u to v in the stack is a directed path (directed subpath of the current
path of the search). With the arc from v to u, this directed path defines
a circuit of G. This proves, by contradiction, the necessary condition of
part (1).

116 Graph Theory and Applications

Let us now suppose that the preceding circumstances do not happen
during a depth-first search of the digraph. So, when a vertex is revisited
it is then postvisited. Let us suppose that the vertices are numbered in the
reverse postorder, that is during the postvisits, from n to 1. At the time when
a vertex v is postvisited, all its successors have been visited, previsited or
revisited, according to a general property of the search noted earlier on. Let
us show that they are also all postvisited. Those of the successors of v which
have been previsited from v are then necessarily postvisited, because they
were in the stack above v and thus necessarily popped before v. The other
successors of v have been revisited from v. They were then postvisited at
the time of their revisit (by hypothesis). Thus, the successors of v were all
numbered before v, and since the numbering is done decreasingly from n to
1, they have received a higher number than the one received by v during its
postvisit. That is the property which defines an acyclic numbering. It should
also be noted that this property is compatible with the extended nature of
the search (the numbering is global). The existence of an acyclic numbering
under the hypothesis that when a vertex is revisited it is then postvisited,
which results itself from the hypothesis without circuits, proves part (2) of
the proposition. It also proves the sufficient condition of part (1), because
a digraph which admits an acyclic numbering has no circuit, according to
proposition 4.1 of Chapter 4.

5.3.8 Acyclic numbering algorithms

An acyclic numbering algorithm will consist of launching a depth-first
search of the given digraph with the following operation while going through
the vertices:

• on postvisit of v: mark v postvisited and number it decreasing from n
to 1.

• on revisit of u: if u is not postvisited, stop because there is a circuit in
the digraph.

On previsit we do nothing.

As an application, we can again take the digraph in Figure 4.5 in†
Chapter 4, which is without a circuit, and apply this algorithm to it. (The
acyclic numbering obtained may not be identical to the one given on this
figure. It can depend on the search followed.)

Search Algorithms 117

This acyclic numbering algorithm is, as for the depth-first search, of
linear complexity.

5.3.9 Practical implementation

In practice (as we will see later on, in scheduling with the potential task
graph), it is not sufficient to detect the presence of a circuit and to stop,
because then the digraph has no acyclic numbering. In fact this circumstance
corresponds to an error in the datum of the digraph, one arc too many
somewhere, creating a circuit. To correct such an error, it is necessary to
have a circuit in order to verify its arcs and to detect one that should not
be present. The justification of proposition 5.3 makes it possible to exhibit
a detected circuit and to do this work, provided that we have access to the
search stack. This is direct with the iterative form but is not directly possible
with the recursive form, since the stack is managed by the system and
therefore hidden. A solution is then to manage an auxiliary stack provided
for that effect, pushing and popping respectively on previsits and postvisits
as with the stack of the iterative version of the search.

5.4 Exercises

+5.1. Write two programs (in your preferred language) solving the eight
queens problem, in the iterative form as well as the recursive,
inspiring yourself from the arborescence searches given. Test them (you
should find 92 solutions) and compare their time performances. What
conclusion can you draw?

5.2. Give an example of a game in which it is the second player who has a
winning strategy.

5.3. Consider the following game:3 two players called A and B choose
alternately the digit 1 or 2. A starts. When four digits have been
chosen, the game is over and the greatest prime divisor of the number
formed by the four chosen digits, written in the order of their choice
from left to right, is then what B wins (and what A loses). Explain
what may be an optimal strategy for a player and determine this
strategy for B, specifying the minimum gain it ensures.

3From Boussard-Mahl, Programmation avancée, Eyrolles (1983).

118 Graph Theory and Applications

N.B. Prime divisor (between parentheses): 1111 (101), 1112 (139), 1121
(59), 1122 (17), 1211 (173), 1212 (101), 1221 (37), 1222 (47), 2111
(2111), 2112 (11), 2121 (101), 2122 (1061), 2211 (67), 2212 (79), 2221
(2221), 2222 (101).

*5.4. (Digraph kernel and winning strategy)

Let us go back to the game of Nim 1-3 dealt with as an example,
but with a different representation of the game from that of
the arborescence associated with it and described in this chapter
(Figure 5.3).

a) Find all possible states of the game (there are eight). Build the
digraph of which the vertices are these states, with an arc from
one vertex to another when it is possible to go from one to the
other with one move allowed by the game.

b) Find in this digraph a set N of vertices, called the kernel, which
has the following properties: for any vertex x /∈ N , there is an
arc joining x to a vertex y ∈ N , arc entering into N , and any
arc exiting from a vertex of N has its head outside N . Hint: you
will take in N the vertex representing the final state (0-0) of the
game.

c) Use the kernel to define a winning strategy (always play by going
into the kernel).

d) Try to generalize the preceding idea for a winning strategy of
any game represented by a digraph which admits a kernel. You
will first define the way to play on the given digraph by inspiring
yourself from the preceding particular case.

+5.5. a) Show that the previsit arcs of an extended depth-first search of a
strict digraph G define a directed forest in G.

b) Try to list the different cases of arcs of revisit which can be found,
in particular for the preceding forest (there are three different cases).

Appendix B

Bases of Complexity Theory

B.1 The concept of complexity

In concrete terms, the concept of time complexity corresponds to the time
required to run a program. It is an essential practical parameter in numerous
applications. This running time depends on many different factors, first of
all on the size of the data to be processed. It is obvious that it will not take
the same time to process a graph with 100 vertices as one with 1000. The
running time has to be considered in relation to the size of the case dealt
with. We talk of the complexity function.

Another equally essential factor is the power of the computer used for
processing. Again, differences may be great, therefore a reference machine
has to be specified as we will see. There are other factors, less obvious but
as important, such as the manner in which the data are represented. This
representation may be more or less efficient with regard to processing.

To speak of complexity means to speak of concepts which at first may
seem clear intuitively but which in fact need to be specified and formalized.
Let us start with the concept of an algorithm. A complete formalization
of this concept requires the definition of a machine in the sense of a
model capable of an automatic process. The model which is the principal
reference is the Turing machine, which bears the name of its inventor in the
1930s. This theoretical “machine” is, as a machine, reduced to its simplest
expression, and that is precisely what makes it useful from a theoretical
point of view. Also, despite its extreme simplicity, it seems to contain all the
calculation possibilities of the most evolved computers. We will not develop

268 Graph Theory and Applications

this theoretical model here; it is enough to know that it exists and makes it
possible to formalize the concept of algorithms.

A machine, no matter which one, processes data which have to be
presented to it in a certain manner. For example, graphs may be modeled
in different ways. We speak of data encoding, which is also a concept which
has to be specified because it has a direct influence on the complexity of
the processing. Let us consider a simple case with the classic algorithm used
to decide if a given integer n is a prime number, meaning that it has no
other divisor than 1 and itself. A classic method is to try as divisors all
the integers less than or equal to

√
n. The number k of divisions to be

done, equal to the integral part of
√
n, is a measure of the complexity of

this test since it is clear that the time necessary will be proportional to
this number, while considering, nevertheless, the division as an elementary
operation of constant time. We may consider a priori that this complexity is
reasonable since it is simply proportional to the square root of the integer.
In fact the value of k is exponential in relation to an usual encoding of
integer n. Indeed, in any number system, decimal or binary for example,
n is represented by a number of digits proportional to logn (log being
in the base considered), and

√
n is expressed exponentially in function of

log n. In base 10, for example,
√
n = 10

1
2
t, where t = log10 n is the size of

the representation of integer n. To take n as the reference size of the data
n corresponds to what is called the unary representation, encoding which
consists of using only one digit (a “stick”, for example, as in primary school),
and in which each integer is written by repeating this digit as often as the
value of the number. This manner of proceeding is not adequate in relation
to complexity. This encoding is therefore considered “unreasonable”. We will
suppose implicitly that, in the development which will follow, the encodings
used are “reasonable”, which is necessary for a realistic complexity concept.

From a general algorithmic perspective, running time is measured by the
number of operations which are said to be elementary. But this concept of
elementary operation depends on the operating level from which we operate,
and, above all, on the nature of the problem and the calculation. This can be
arithmetic operations, for a sorting algorithm it will involve comparisons and
exchanges of elements, and for the processing of graphs visits and specific
operations on the vertices. We introduce the general concept of elementary
operations pertinent for the problem under consideration. These are the
operations which are directly involved in seeking the result.

Appendix B 269

Size of Complexity function
problem n n2 2n

10 0.01 μs 0.1 μs 1.024 μs
20 0.02 μs 0.4 μs 1.049 ms
30 0.03 μs 0.9 μs 1.074 s
40 0.04 μs 1.6 μs 18.3 minutes
50 0.05 μs 2.5 μs 13.0 days
60 0.06 μs 3.6 μs 36.6 years
70 0.07 μs 4.9 μs 374 centuries

Table B.1. Comparison of complexity functions

However, we may then worry about the possibly arbitrary nature of this
concept, and, even more, about the imprecision which results from neglecting
other more elementary operations, or even at the lowest level, “machine
operations”. In fact, this has no impact on the complexity classes which are
defined. Indeed, it is always possible to consider that an operation at a higher
level is equivalent to a bounded number of lower level machine operations.

B.2 Class P

After all these specifications, we come to what is at the heart of the
complexity theory, that is the polynomiality criterion. When the size n of the
datum increases, there is a great difference theoretically, but also practically
in most cases, between the growth of a complexity function which would
be of the order of a polynomial function and an exponential growth. Let us
consider for example Table B.1, which gives the running time requested for
a datum of size n = 10, 20, . . . , 70, with the number of operations expressed
by different complexity functions. Here the hypothesis is of a machine which
runs 109 operations per second, that is, a billion operations per second,
which is already a respectable speed (abbreviations used: s for second, ms
for 10−3 second and μs for 10−6 second; the other time units are spelled
out). We see in this table that the running time remains reasonable with
polynomial functions n and n2. However, they no longer remain reasonable
with an exponential function such an 2n as soon as the size n becomes a little
large (although still very modest in practice; here we will stop at n = 70:
the time obtained, 374 centuries, is sufficient explanation!). Asymptotically,

270 Graph Theory and Applications

it is well known that an exponential function (with a positive base) has a
faster growth than any power function.

There is another way to look at things, maybe more explicit. Given a
computation time available on a first machine, and an equal time on a second
machine 10 times faster, how much bigger is the datum we can process with
the second machine relative to the first one? Specifically, let n be the size
of the problem which can be processed by the first machine in the given
time, and let n′ be the size of the problem which can be processed on the
second machine for the same available time. Starting first with a complexity
function equal to n2, we have:

n′2 = 10n2

and we deduce:

n′ =
√

10n � 3, 16n

Thus, with the machine which is 10 times faster we can in the same
given time process problems which are three times larger in size, which
is interesting. As we are going to see, the situation is quite different with an
exponential complexity, for example 2n. We then have:

2n′
= 10 × 2n

which gives:

n′ = n+ log2 10 � n+ 3, 3

A machine which is 10 times more powerful can only process data of a few
additional size units. For an initial datum of size 1000 for example, the gain
is not significant.

This polynomial growth criterion of the complexity function was
therefore introduced, in particular by J. Edmonds in 1965. This criterion
quickly turns out to be pertinent, not just because of its asymptotic nature
which we mentioned. There is also the stability of this criterion relative to
the composition of algorithms, because of the fact that the composition of
polynomial functions is itself a polynomial function. In addition, there is
the fact, previously mentioned, that reasonable data encodings only differ
from one another polynomially, meaning that any encoding may be upper
bounded in size by a polynomial in function of another encoding.

Appendix B 271

We are used to expressing the complexity of an algorithm with the
classic notation of Landau: an algorithm is of complexity O(f(n)) when
the number of elementary operations in relation to the size n of the data is
upper bounded by f(n) multiplied by a constant, as soon as the integer n
is greater than a certain value. If function f is polynomial, the algorithm is
called polynomial and the problem dealt with by this algorithm is also called
polynomial. These problems define the complexity class denoted P. Since a
polynomial function behaves like its terms of higher degree, and taking into
account the constant involved in O, we replace f(n) by an expression of
the form O(nk). Thus we commonly write a complexity in the form O(nk).
The particular case k = 1 is in principle the best possible a priori, since we
need to count at least the time to read the data. This is the case of linear
algorithms.

Concerning other cases, practice shows that we rarely go over small
values of exponent k: 2, 3, 4 This fact reinforces once again the interest
of the polynomial criterion: indeed we did mention that an algorithm which
was polynomial but with a very high exponent k, for example 1050, would be
without practical interest, which is obvious. On the other hand, an algorithm
of exponential complexity but with a very low coefficient in front of the
exponent, for example 210−50n, would not be so bad. We must also say
that what is under consideration here is what we call complexity in the
worst case. This means that we upper bound all data cases uniformly. Yet,
it may happen a priori that most cases only require a reasonable time,
contrary to a few cases which are rare or artificial and are sometimes called
“pathological”. For such a case, and in general, it seems more natural to
evaluate what is called the complexity in the expected case, which takes into
account appearance rates of each data case, that is the probability with
which each possible instance is likely to occur as an input. However, such a
measure of complexity is often delicate to calculate, if only because of the
fact that it means knowing the input distribution.

A finer analysis of complexity leads us to consider mathematical
functions with intermediary growth between the integer-power functions.
Thus we often consider function nq, where q is a real number (not necessarily
an integer), logk n, where k is an integer. (We do not specify the base of this
logarithm but we can always consider it to be base 2. It will not change
the result expressed asymptotically in O because, as we know, all systems
of logarithms are proportional.) To give an example, which does not come
from graph algorithms but is sometimes useful, the best sorting algorithms
are of complexity O(n logn), which is better, for example, than O(n2).

272 Graph Theory and Applications

B.3 Class NP

When a problem is recognized as class P, it is therefore considered as
satisfactorily solved algorithmically. This is the case for numerous basic
graph problems such as the search for connected components. However, other
problems, apparently simple, at least to set, cannot be solved polynomially.

This is the case with the problem of graph isomorphism. Given two
simple graphs G and H, is there an isomorphism of G to H, that is a
bijection from vertex set ofG onto vertex set ofH preserving the neighboring
relationship defined by the edge? Let us specify that such a problem with
a “yes” or “no” answer is called a decision problem and that here we are
only considering this type of problem. One way, of course non-polynomial in
complexity, is to try the n! possible bijections, n being the common number
of vertices of the graphs considered, until finding one which respects the
condition. If all bijections have been considered and none is appropriate,
then it is possible to answer “no”. Let us note an important fact here: given
a bijection on the vertices, it is possible to verify polynomially that it does
(or does not) define an isomorphism, a complexity O(n) algorithm being
easy to imagine for this check. If we have such a bijection, we can say that
we can verify polynomially the answer “yes”, and the bijection plays the
role of a “certificate” for this answer, in the sense that we can be assured of
a positive response. If, on the other hand, the answer is negative, then such
a certificate does not exist.

We have here, therefore, a problem for which we can verify polynomially,
thanks to the certificate, a positive answer, even when this certificate itself
cannot be found polynomially. This is the idea which presides over the
definition of class NP: problems for which it is possible to check a positive
answer polynomially without necessarily being able to find polynomially
this answer. The acronym NP does not mean “non-polynomial” but
“non-deterministic polynomial”: the non-determinism here represents our
incapacity (which may be temporary) to find directly, that is without the
help of a certificate, the right answer. This idea, a bit disconcerting for
beginners, is clearly formalized by the non-deterministic Turing machine,
but that goes beyond this simple introduction to complexity.

The concept of a certificate, more intuitive than the non-deterministic
one, gives a good overview of the concept of class NP provided it is
formalized. In the following case, we will call an instance of a problem a
data case for that problem, for example a pair (G,H) of graphs for the

Appendix B 273

isomorphism problem of two graphs. Therefore it is said that a decision
problem Π is in class NP if there is a polynomial algorithm A and a
polynomial p such that for any instance x of A the answer is “yes” if and
only if there is a datum y such that |y| ≤ p(|x|) and algorithm A applied
to x associated with y gives the answer “yes” (|x| designates the size of
x, likewise for |y|). The algorithm A is the checking-algorithm and y is a
certificate, for instance x of Π. Let us note the obligation for the certificate
to be of polynomial size in relation to the size of the instance; this is an
indispensable condition for a polynomial time check. The certificate is said
to be succinct.

We can immediately verify the inclusion of class P into class NP: a
polynomial algorithm is also a checking algorithm of a class P problem, with
an empty certificate. On the contrary, one may think that this inclusion is
strict, that is that P �= NP, taking into account the lower requirement that
represents the simple checking of a certificate compared to that of finding
a certificate. It is possible, nevertheless, as no one so far has been able to
prove or disprove it.1

B.4 NP-complete problems

Naturally, from the perspective of the question P �= NP, research has
been conducted to better understand class NP, in particular to spot the
most difficult problems of this class in order to attempt to “capture” what
creates the intrinsic difficulty of problems of this class.

The comparison tool here is the polynomial reduction. A problem π1 can
be polynomially reduced to a problem π2 if there is a polynomial algorithm,
called a reduction-algorithm from π1 to π2, which calculates for each instance
x1 of π1, an instance x2 of π2 such that the answer for x1 is “yes” if and
only if the answer for x2 is “yes” (x1 and x2 have the same answer). Thus, if
we have a polynomial algorithm solving π2, we can deduce a polynomial
algorithm solving π1, by composing the reduction-algorithm form π1 to
π2 and the solving-algorithm for π2 (note the advantage of being able to
compose polynomial algorithms). In other words, if π2 is in class P, so is π1.
Again, π2 is at least as difficult as π1 and is thus possibly more representative
of the difficulty of class NP. The final interest of all of this is to put in
evidence a problem at least as difficult as all the others in class NP, that is
1There is a one million dollar reward offered by an American patron for whoever solves

the problem. Go for it!

274 Graph Theory and Applications

a problem to which all others can be reduced polynomially. A “universal”
problem, in a way, for class NP is called NP-complete. Such a problem
can be formally put in evidence with the non-deterministic Turing machine
mentioned above. However, it is more interesting to know that there are
such problems which can be put naturally. The first found, at the beginning
of the 1970s, is a problem of logic, called a satisfiability problem (denoted
SAT) which we will now describe.

The data are: n Boolean variables x1, . . . , xn taking the value true or
false, m Boolean expressions C1, . . . , Cm called clauses and expressed in a
disjunctive form, that is:

Cj = y1 ∨ · · · ∨ ykj

where each yi is equal to xl or ¬xl, where l ∈ {1, . . . , n} (remember the
classic logic operators: or denoted ∨, no denoted ¬). The question then is:
is their an assignment of values to variable xi such that each clause Cj takes
the value true (that is it has at least one yi which has the value true)? Let us
note that this problem is clearly in class NP: such an assignment is in fact
an appropriate certificate. Cook–Levin’s theorem states that this problem
is NP-complete. Historically, SAT has been the first natural problem found
in class NP, but there have been numerous others found since, in particular
concerning graphs.

B.5 Classification of problems

It is impossible to speak of the bases of complexity theory without
mentioning the class coNP and the concept of a “well-characterized”
property. The definition of this class is based on the dissymmetry which
exists between the answers “yes” and “no” in the problems of class NP.
This dissymmetry does not appear in class P: the answer “no” is automatic
if it is not the answer “yes”. For a problem of class NP, the answer “no”
may not have an obvious succinct certificate. For example, for the problem of
graph isomorphism, what can be a certificate for the answer “no”? Another
example: for the problem of the existence of a Hamilton cycle in a graph,
if it is easy to see how to “certify” the answer “yes”, simply by giving a
Hamilton cycle, we do not see directly how to certify the answer “no”.

Class coNP is therefore defined as the class of decision problems for
which the “complement” problem, that is the problem set in order to
invert the answers “yes” and “no”, is in NP. We do not know if NP =
coNP and, in the hypothesis of an inequality, the intersection of these

Appendix B 275

two classes is interesting to consider: it represents the problems based on
a well-characterized property in the sense that the answer “yes” as well as
the answer “no” can be certified by a succinct certificate. This is a typical
case, for example, with the problem of recognition of planar graphs: the
answer “yes” can be certified by a planar embedding of the graph, while the
answer “no” can be certified by the presence in the graph of an excluded
configuration (by application of Kuratowski’s theorem, see Chapter 11).
However, the problem of the recognition of planar graphs is in fact in P; it
is therefore not surprising that it belongs to this intersection since we have
in general P ⊆ NP ∩ coNP. Another basic question of complexity theory is
to know if we have equality in this inclusion. Very few problems are known
in this intersection without also being known in P.

On the whole, we have a possible configuration of the previous classes as
shown in the diagram in Figure B.1. Some people think this is probable. If
it is not like this, then things are very different from what they are thought
to be today

coNP

NP-complete

NP

P

coNP ∩ NP

Figure B.1. Classes of complexity

Let us specify, finally, that an optimization problem is different from a
decision problem. Let us take for example the traveling salesman problem
(Chapter 10), which can be stated as follows: find in a weighted graph
a Hamilton cycle minimum for the sum of the values of its edges. We
associate it with the following decision problem: given an integer k, is there
a Hamilton cycle of length ≤ k? Obviously a solution to the optimization
problem gives a solution to the decision problem, simply by comparing the
value of a minimum cycle with k. However, what is more interesting is
that the converse is true. It is less obvious; it can be seen by bounding
by successive dichotomies the value of a minimum cycle. A problem for
which the associated decision problem is NP-complete is sometimes called
NP-difficult rather than NP-complete.

276 Graph Theory and Applications

We again find in an interesting way the idea of a well-characterized
property in certain optimization problems, typically the maximum flow
problem in a transportation network and that of the minimum cut
(Chapter 8). At the optimum, we have an equality which certifies one as
maximum and the other as minimum.

B.6 Other approaches to difficult problems

Once it has been admitted that some problems can probably not be
practically solved in a reasonable manner, that is by a polynomial algorithm
(in the hypothesis P �= NP), other approaches to NP-complete problems
have to be contemplated.

A first, natural, approach is to try to obtain in polynomial time an
approximate solution with a precision which has to be given. Problems are
not all equal when it comes to this. For some it is possible to find good
approximations, others are resistant to any reasonable results, such as, for
example, the traveling salesman problem for which one shows that, except if
P = NP, there is no satisfactory approximate polynomial algorithm to solve
it (see Chapter 10). There are many more approaches, not studied here, and
we refer the reader to the specialized literature on this subject.2

2For example: C.H. Papadimitriou, Computational Complexity, Addison-Wesley (1994);
J. Stern, Fondements mathématiques de l’informatique, McGraw-Hill (1990); M.R. Garey
and D.S. Johnson, Computers and Intractability, Freeman (1979), a great classic reference
in the field.

