
Introduction

Machines that make music: the prophecy has been running throughout
history since the mathematical nature of music was put forward by the
Pythagoricians. Athanasius Kircher’s Arca Musurgica, described in his 1650
treatise Musurgia Universalis, displays wooden inserts that can be drawn
to arrange pre-defined musical fragments into a coherent contrapuntal
composition. Not exactly an automaton, the arca could be seen as an early
algorithmic music setup. It constrained, through a clever classification of
musical bits into columns and rows, a huge combinatorial space to a subset
of eligible arrangements that made sense with regards to the underlying music
theory.

In 1821, Winkel built the “self-composing” Componium, yet another
instance of orchestrion, a mechanical organ bringing into life the colors of
the whole orchestra thanks to the mechanism of pinned cylinders and levers
acting to open sound pipes or to strike drums. However, Winkel’s invention
had something more to it: a combination of Kircher’s formal algorithmics and
of a sound-producing device. Each barrel was formed by a juxtaposition of
cylindric “slices”, each storing two measures of music. A total of 40 pairs of
measures, and, for each of these, seven additional variations were available.
While a barrel was playing its two measures, a complex mechanism worked
to shift the second cylinder to one of eight variations for the next pair of
measures, so the music would seamlessly stream through one of 840 sequential
combinations.

Chapter written by Charlotte TRUCHET and Gérard ASSAYAG.



xiv Constraint Programming in Music

These inventions, among many others of the like, drew an incredible
amount of fascination. The dreams, however, spread faster than the
technologies evolved. French writer Raymond Roussel (1877–1933), himself
a musician, unleashes his imagination in two of his novels, Locus Solus and
Impressions d’Afrique. One of his poetic machines is a pocket Componium,
where the source of variations is the unpredictable wriggling of insect
feets. These motions activate a complicated system of wheels and rods
that end up plucking tuned metal strips. The purpose of this setup is to
benefit from the endless changes induced by the random source while
controlling the polyphonic output so that it still conforms to defined musical
rules:

En outre, édifié avec le concours d’un harmoniste éclairé, un
prodigieux système frénateur de rouages inextricables, régentant
les huit zones séparément et dans leur ensemble, s’opposait à la
production de toute cacophonie sans exclure aucune combinaison
rationnelle et analysable.

(In addition, built with the help of an enlightened harmonist a
wonderful reduction system of inextricable wheels, dictating the
eight voices separately and altogether, prevented the production
of any cacophony without excluding any rational and analyzable
combination)

Raymond Roussel, Locus Solus, 1914

In his Impressions d’Afrique (1910), Roussel describes a bigger machine,
enclosed in a glass container, as a full-scale Componium extended with
bowed strings, plucked harps, brass ensembles, and even a mechanical piano.
However, the purely generative fabric is mixed here with the actual voices of
opera singers played by an automated phonograph juke-box. Quite magically,
the whole mechanism ensures synchronization and harmonic coherence
between the audio material and the generative one, as if the machine was
to “understand” that, as soon as the acoustical signal comes into play, the
mechanical algorithmics should be constrained to an accompaniment behavior
and should play by the rules.

These examples show that long before the advent of the digital era and
musical informatics, visionary characters paved the way either by actually
conceptualizing and engineering machines or by imagining them in the
fictional and poetic realm. As is sometimes the case with science fiction,
the imaginary inventions were not that far in essence from what happened



Introduction xv

eventually when science and technology were ready to fulfill the poetic
vision. One of the finer technical achievements in modern music computing,
called “score following”, results from different research streams that took
place for more than 25 years in such places as Carnegie Mellon University
or Ircam research center in Paris. Just like Roussel’s literary invention, the
machine, now a digital one driven by complex software, tries to continuously
synchronize with a live performer (or a recorded signal), sharing the same
reference score, acting on the one hand to understand the live input (Is it
slowing down or accelerating? Has the performer skipped or permuted a
note in a rapid movement?) and on the other hand to perform its own part
in harmony with the musical context. The machine part can be anything
from just reading a (possibly time-scaled) sound file to executing generative
algorithms that produce rich synthetical or sampled musical textures in
coherence with the live part.

An interesting variant of this technology addresses the case when there
is no common score to start with. This situation typically arises with
improvisation. Computer music researchers have come up with software
(such as the ���� software at Ircam) that incrementally build and update
a model of the music played by the musician. Providing an interesting
improvisation cannot be totally chaotic – signal processing, statistical learning,
and formal sequence modeling engines work in cooperation to describe
whatever structures of recurrence or variation they find in the input, and to set
predictive hypothesis about what is coming next. Referring to this speculative
model as a kind of open score, the digital agent can again unroll its musical
contribution and add synthetic layers, by controlling virtual synthesizers or
playing realistic instrumental samples.

If we follow the same little game, trying to find out to what extent the
poet’s prophecies have met with modern achievements, we would assimilate
the “insect machine” to algorithmic music generators, hundreds of which
have been experimented since the early experiments by Hiller and Isaacson
in the mid-1950s. Their famous Illiac suite for string quartet (premiered at
University of Illinois Urbana-Champaign on August 9, 1956) respects in
part the pocket componium paradigm. The source note material is generated
stochastically using Monte-Carlo methods. Then it is filtered out using formal
rules inspired by 16th Century modal counterpoint as well as 20th Century
serialism. Non conforming notes were excluded from combinations, in a sense
preventing “the production of any cacophony without excluding any rational
and analyzable combination”. This seminal experiment has left a classical



xvi Constraint Programming in Music

iterative scheme for music generation: produce material with greater diversity,
combine it into vertical and horizontal arrangement, check against rules
pertaining to the logics of some music theory, detect violations, exclude bad
candidates, and look again for better ones. This applies to purely generative
contexts such as algorithmic music and to interactional contexts as well, where
part of the material is imposed by a live musician and part is generated in
conformance with both the imposed reality and with general rules.

However, the generate and filter approach, in its basic definition, is clearly
far from optimal considering the huge combinatorial spaces generated by
music problems involving a great deal of variables. In a polyphonic music
sequence, basically each note is a problem variable, connected to many others
by constraints, that is, logical predicates restricting their possible values.
Constraint programming has brought another way to look at it, by shifting the
rules (now modeled as predicates connecting the variables) from the filtering
stage to the exploration strategy itself. In effect, each choice for a variable,
for example a note in a chord, restricts the remaining exploration domain
for the others, for example the remaining notes in that chord. How does one
dynamically define a combinatorial space and how does one navigate it in the
search for solutions that have become important. There is no single magical
solution, as will be shown in this book. This is a reason why many of the
major software environments for assistance to music composition, analysis, or
performance may contain not only one, but several constraint programming
engines with different underlying models. This is, for example, the case for
the �
������
 environment developed at Ircam, or ��	� at the Sibelius
Academy in Helsinki.

Techniques of (or inspired by) constraint programming are percolating
into many regions of musical informatics such as algorithmic music,
assistance to composition and analysis, interaction design, real-time control,
sound synthesis and processing. In effect, recent research has shown
that musical problems are intrinsically multi-scale: from sound physics to
signal modeling to symbolic categorization to complex structures linking
discrete units together. An ancient conception, where artificial intelligence
techniques, including constraint programming, were reserved to symbolic
descriptions (e.g. notes, chords, and discrete music parameters) while sound
and interaction was in the realm of signal processing, is now challenged.
Research in machine audition and music information retrieval produces more
and more high-level signal-based descriptors that get closer to perception
and cognition, thus to symbolic categorization. Composition software tends



Introduction xvii

to mix formal symbolic representations with parameters for the continuous
control of sound synthesis and processing. In the real-time interaction
domain, specialists no longer believe that a purely signal processing approach
will be powerful enough to model complex musical behaviors. Hybrid
architectures, combining multi-scale representations such as time-frequency
data, signal descriptors and symbolic alphabets, as well as various techniques
such as signal processing, formal languages, and logical modeling, seem to
appear as the next step in research and development. In this new landscape,
constraint programming takes its place as one of the major high-level musical
problem resolution techniques. It may appear in one of two ways: explicitly
as a user-level language for specifying problems, or implicitly as a background
processing library, transparent to the user, to which a part of the computations
are delegated, in the frame of a complex composition or interaction system.

The seminal works on constraint and logic programming in music are
Kemal Ebcioglu’s. His goal was to compute music that would respect the
complex rules of harmony and counterpoint. For the non-musician reader:
classical music relies on numerous rules that aim at describing good music.
Several treaties describe an impressive number of such rules, for instance: the
extreme voices, bass and soprano, should not have similar moves (ascending
or descending); different voices must not cross; there must not be successive
parallel fifths or octaves between two voices; some dissonant intervals
between two successive notes of a voice are forbidden; a phrase must end
with a cadence; and so on. From a computer science point of view, these rules
are the constraints of classical music. Thus, in this formalism, writing good
music is a matter of finding notes, within a given range (each voice has an
interval of possible notes), respecting the rules. This naturally has a flavor of
constraint programming.

In an article entitled “Computer counterpoint” in the Proceedings of
ICMC’80 (International Computer Music Conference), Ebcioglu details the
rules of florid counterpoint, and proposes an enumeration technique to produce
correct music. Heuristics could also be defined to guide the search toward
preferred solutions. He then developed ������, an expert system based on
logic programming, to produce four-part harmonies in the style of J. S. Bach.
Although this is not stricto sensu a constraint program, this work stated the
bases of the automatic harmonization problem that was developed later by
other authors (Tsang and Aitken in 1991, Ballesta in 1994, Pachet and Roy in
1998, to name but a few). Ebcioglu not only formalized the musical rules in a
logical framework but also noticed that these rules “were grossly insufficient



xviii Constraint Programming in Music

for producing a nice output”. He thus added his own rules to improve the
musical result by constraining part of the melodic profile. Later on, in 1998,
Dellacherie and Chemillier showed that the harmonization problem had many
solutions, which is not surprising.

What are the rules to produce good music? Does constraint programming
have a role to play in contemporary music, and not only in classical music?
On which criteria can the output of a musical system be validated? Are
these questions even well defined? We do not have the answers. Actually,
we even chose not to ask the questions. Instead, we invited composers and
musicians to be part of this book, along with computer scientists. This book
is thus a meeting between producers of constraints, that is, computer scientists
who develop constraint system hopefully well suited to music, and users
of constraints, that is, musicians who explain why and how they use this
particular technique. Sometimes, it may not be the usual way.

The chapters are independent and they can be read in any order. They
are sorted by lexicographical order according to the name of the first author.
Several paths can be followed through the book, and three of them are
proposed below, addressed to non-musician computer scientists, constraint
programmers, and musicians.

For the non-musician reader, a good starting point is the chapter by
Georges Bloch and Charlotte Truchet. Georges Bloch, a French composer and
Professor at the Conservatoire de Paris (France), explains how he sees the role
of constraints in the compositional process. The authors use a local search
algorithm to solve a harmonization problem, and the approached solutions,
depending on their costs, are integrated into the score by unfolding the
timeline.

Musical time is also an important concern in the chapter by Antoine
Allombert, now a researcher at the University of Paris 13 (France), with his
co-authors. This chapter describes the problem of interactive score, where
performers can improvise some parts. Constraints maintain the temporal
coherence of the score. The basic constraint system can be solved by Petri
nets, but the use of a timed calculus model enables a finer interaction. This
can be followed by the chapter by Carlos Olarte, computer science researcher
at the University Javierana Cali (Colombia), with his co-authors, which
presents in more detail a temporal concurrent constraint calculus. In music,
this process calculus models several problems such as dynamic interactivity in
a score.



Introduction xix

Time in music is of course related to the rhythmical structures. Rhythms
are difficult to formalize, probably because, from a computer science point
of view, they are contextual and have a complex hierarchical structure.
Örjan Sandred, a Swedish composer at the University of Manitoba (Canada),
has designed a sophisticated system, in particular for rhythm representation.
This underlying structure can be accessed by the constraint system, with a
clever masking system for choosing the constrained parameters.

The question of an appropriate music representation for musical constraints
is detailed in Torsten Anders’ chapter. Torsten Anders, a German composer
now at the University of Bedfordshire (United Kingdom), designed ����������,
a constraint-based music system for composition.

Serge Lemouton, a computer scientist and musician from Ircam in Paris
(France), details in his chapter several constraint problems, again on different
musical objects: melodies, harmonic profiles, and so on. These problems
are solved in 	�
���. His point of view is precious as he has worked in
collaboration with several composers and details the musical aspects of these
works.

Modeling musical constraint problems is also at the basis of the chapter
by Charlotte Truchet, computer science researcher at the University of Nantes
(France), which describes several musical problems in contemporary music.
The problems are solved with a local search method, enabling us to deal
with meaningful approached solutions for overconstrained problems. She
then developed ��������, a library dedicated to musical constraints.

Finally, the chapter by Grégoire Carpentier, researcher at Ircam and Haute
Ecole de Musique in Geneva (Switzerland), opens an entire new field for
musical constraints, with the appearance of sound features. It formalizes the
problem of automatic orchestration, which consists of combining sounds from
different sources or instruments to meet a given sound profile. To tackle this
problem, a constraint system must deal with musical compound objects and
integrate multi-criteria optimization. Grégoire Carpentier finally describes the
use of his system by the British composer Jonathan Harvey.

There are other ways to read this book. A constraint programmer might
prefer to be guided by the solving techniques, starting by the well-known
	�
��� solver used by Serge Lemouton, or the �� (Mozart) programming
language underlying the ���������� system by Torsten Anders. Still on
complete methods, Örjan Sandred uses ����, an ad hoc solver for musical



xx Constraint Programming in Music

constraints on rhythms. Incomplete methods, here local search algorithms,
have also been introduced in musical constraints, and the use of a particular
metaheuristic is exposed in the chapters by Charlotte Truchet and Georges
Bloch. A similar algorithm is adapted by Grégoire Carpentier to solve the
orchestration problem. Finally, the chapters by Antoine Allombert et al. and
Carlos Olarte et al. introduce interaction and dynamicity, which are research
domains within constraint programming.

Musicians should probably start with the two chapters providing a catalog
of detailed musical constraint problems, for example, Serge Lemouton and
Charlotte Truchet, to get the flavor of constraint programming through
musical examples. The chapter by Torsten Anders details the example
of florid counterpoint as a constraint problem, which should sound
familiar. This chapter also discusses music representation issues, and can
naturally be followed by the chapter by Örjan Sandred that also details a
music representation, focusing on rhythms. The chapter by Georges Bloch
and Charlotte Truchet then shows how musical questions and constraint
programming issues interact in the compositional process. The question of
time raised by Georges Bloch is also at the core of the chapters by Antoine
Allombert et al. and Carlos Olarte et al., which shift the music representation
from the usual, pre-defined score to the problem of interactive score where
music is partly written, and partly improvised. Grégoire Carpentier’s chapter
finally extends the constrained musical objects from the symbolic score to
sound attributes with the problem of orchestration.

Constraint programming has now earned a full place in the toolbox offered
by computer-assisted composition, and more generally computer music. The
variety of solving techniques, languages, and music representations used in
the field shows that musical applications of constraint programming should be
designed in a true computer-aided decision process, interleaving the constraint
technology and the musical knowledge expressed in the music representations.

Finally, it is an awful thing to write about music. Music is meant to be
heard, not read. Accompanying this book, the reader will find online1 some
musical excerpts associated with several chapters. After reading this book,
please, forget about the constraints, and listen to the music.

1 http://contraintesmusique.lina.univ-nantes.fr/ContraintesMusique/.



Introduction xxi

Acknowledgment

The editors would like to thank Carlos Agon for his help on reading and
formatting this book.


