Contents

Preface	xi
Introduction	XV
I.1. Background Instant State I.2. Main assumptions Instant State I.3. Key of the multi-scale approach: the internal actions,	xv xvii
a new tensor concept	xviii
Notations	xxi
Chapter 1. Fundamentals: The Tensor Structures Induced by Contact Friction	1
1.1 Microscopic scale: the elementary inter-granular contact	3
1.1.1. Vector formulation of energy dissipation.	3
1.1.2. Tensor formulation of energy dissipation.1.1.3. Physical significance – algebraic and geometrical	3
representations	5
1.2. Mesoscopic scale: the discontinuous granular mass	7
1.2.1. Vector formulation of energy dissipation.	7
1.2.2. Lensor aspects of energy dissipation	8
1.2.3. A key population effect in energy exchanges: the internal foodbook internation	0
1.2.4. The mesoscopic equation of energy dissination	9
by contact friction	12
1.2.5 Minimal dissipation and ordered structures	13
1.2.6. Maximal dissipation and disordered structures	15
1.2.7. General solutions of dissipation equation with $0 \le R(A) \le 1$ –	- 0
some key properties and geometrical representation	18

vi Granular Geomaterials Dissipative Mechanics

	1.2.8. Practical situations: theoretical and practical minimum
	dissipation rule
	1.2.9. Practical situations: the apparent inter-granular friction
	1.3. Macroscopic scale: the equivalent pseudo-continuum.
	1.3.1. Previous works on a tensor formulation of energy dissipation
	1.3.2. Correspondence between equivalent pseudo-continuum and
	discontinuous granular mass
	1.3.3. The macroscopic equation of energy dissipation
	by contact friction
	1.3.4. Coaxial situations: the six allowed strain modes and
	their physical meaning.
Ch	apter 2. Natural Compatibility With Mechanical
He	terogeneity
	2.1. Compatibility with the heterogeneity of internal actions
	2.1.1. Discontinuous granular mass in motion near
	minimal dissipation
	2.1.2. Relationship on statistical distributions of
	contact action orientation
	2.1.3. Equivalent pseudo-continuum in motion near
	minimal dissipation
	2.1.4. Conclusions on the compatibility with the heterogeneity
	of internal actions
	2.2. Compatibility with the heterogeneity of internal forces and internal
	movement distributions (stress and strain rates)
	2.2.1. Case of coaxiality – compatibility with heterogeneity of
	stresses and strain rate distributions
	2.2.2. General situations near minimal dissipation
	2.2.3. Conclusions on heterogeneity of stresses and strain rates
Ch	apter 3. Strain Localization and Shear Banding:
Th	e Genesis of Failure Lines
	3.1. Background and framework of the analysis
	3.2. Shear bands orientation.
	3.2.1. Constant volume motion (critical state)
	3.2.2. Variable volume motion
	3.3. Shear bands internal structure
	3.3.1. Kinematic stationary structures in shear bands
	3.3.2. Confrontation with key experimental results of
	Nemat-Nasser and Okada
	3.3.3. The dissipative microstructure inside of shear bands
	2.2.4 Consequences on the development of sheer hands

 3.4. Localization criterion	80 80 82 84 87 87 88
Chapter 4. Failure Criterion: The Micromechanical Basis of Coulomb Criterion	91
 4.1. Background and framework of the analysis. 4.2. Failure criterion at a critical state: the Coulomb Criterion	92 94
framework 4.2.2. The criterion of least shear resistance	94 95 100
resistance solution Chapter 5. Coupling Between Shear Strength and Volume Chapter 5. Coupling Between Shear Strength and Volume Chapter 5. Generalized 3D Stress–Dilatancy Relations	108 111
 5.1. Framework of the analysis	111 112
 strain modes	 115 117 118 118 120 120 122 122 122 122 123 125
5.10. Conclusions	125
Chapter 6. Experimental Validations	129
6.1. Validations from classical "triaxial" test results 6.1.1. Triaxial compression	130 130

6.1.2. Triaxial extension and cyclic triaxial	132
6.2. Validations from simple shear experimental results	133
6.3. Validations from true 3D compression apparatus results	135
6.4. Validation from cyclic torsional shear tests data	137
6.5. Validations from detailed numerical simulations with	
realistic discrete particles	139
6.6. Measurement of apparent inter-granular friction – typical	
values of the parameters	141
Chapter 7. Cyclic Compaction Under Alternate Shear Motion	145
7.1. Background and framework of the analysis	145
7.2. Kev results	147
7.3. The cyclic compaction ratio versus the principal stress ratio.	149
7.4. Energy efficiency of compaction	150
7.5. Limit of cyclic compaction when apparent inter-granular	
friction vanishes.	151
Chapter 8. Geostatic Equilibrium: The K ₀ Effect	153
8.1. Background and framework of the analysis	153
8.2. The micromechanical process of geostatic stress-building	
in the soil mass	155
8.3. The solutions provided by the multi-scale approach.	156
8.4. The resulting K_0 formula based on micromechanics.	158
8.5. Comparison with empirical Jaky formula	159
8.6. The two limits of geostatic equilibrium	160
8.7. Limit of geostatic equilibriums when apparent	
inter-granular friction vanishes	161
Chapter 9. Scale Effects in Macroscopic Behavior	
Due to Grain Breakage.	163
9.1. Introduction to grain breakage phenomenon: a framework	
of the analysis	163
9.1.1. Elementary grain breakage	164
9.1.2. Statistical representations	165
9.1.3. Central trend in the statistics of mineral particle failures	166
9.2. Scale effects in shear strength	167
9.2.1. Shear strength of rockfill	167
9.2.2. Evidence of scale effect	168
9.2.3. Scale effect rule on shear strength envelope (failure criterion)	171

Chapter 10. Practical Applications of Scale Effects to Design and Construction	175
10.1. A new method for rational assessment of rockfill	
shear strength envelope	176
10.2. Incidence of scale effects on rockfill slopes stability.	178
10.2.1. The question of stability assessment.	178
10.2.2. Explicit scale effect in safety factors.	179
10.2.3. Scale effect compensation	182
10.3. Scale effects on deformation features and settlements	184
10.3.1. Scale effects on deformation features	184
10.3.2. Scale effects in rockfill apparent rigidity modulus.	187
10.3.3. Scale effects in settlements	190
Chapter 11. Concluding Remarks	195
11.1. Concluding remarks on features resulting from energy	
dissipation by friction	195
11.1.1. Tensor structures induced by contact friction	
on internal actions	196
11.1.2. Relevance of minimum dissipation rule	197
11.1.3. Compatibility with heterogeneity.	198
11.1.4. Localization and shear banding	198
11.1.5. Failure criterion	199
11.1.6. Experimental validations.	200
11.1.7. Coaxiality assumption in macroscopic properties	200
11.1.8. Tracks for further developments	201
11.2. Concluding remarks on features resulting from grain breakage	202
11.3. Final conclusions.	203
Appendices	205
References	267
Index	275